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Multiple Linear Regression (MLR) Introduction

Multiple linear regression (MLR) can be used to summarize the relationship
between a continuous response variable, Y , and multiple explanatory
predictor variables, X1,X2, . . . ,Xk , using linear relationships.

Reasons to include multiple predictors:

To address the scientific question

To adjust for confounding

To gain precision
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Addressing the scientific question

Address the scientific question. The scientific question may dictate
inclusion of predictors:

Predictor(s) of interest: The scientific factor(s) under investigation
may need to be modeled by multiple predictors (e.g., dummy variables,
polynomials). Or, there may be more than one predictor of interest.

Effect modifiers: The magnitude of the effect of the predictor of
interest may vary depending on levels of an effect modifier.

Confounders:...
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Addressing the scientific question (cont.)

Address the scientific question. The scientific question may dictate
inclusion of predictors:

...

Confounders: Confounders are a variable that effect both the predictor
of interest and the outcome variable.
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Precision

Precision. Adjusting for an additional covariate(s) can change the standard
error of the slope estimate corresponding to the predictor of interest.

The standard error decreases when smaller within group variance.

The standard error increases when there is a correlation between
predictor of interest and other covariates in the model.
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The MLR Model
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The MLR Model

As in SLR, assume Yi |X1, . . . ,Xk ∼ N(µY |X, σ
2
Y |X), but now we assume

underlying center changes linearly with several other factors:

µY |X = β0 + β1X1 + β2X2 + . . .+ βkXk

Or, equivalently,

Yi |Xi = β0 + β1X1i + β2X2i1 + . . .+ βkXki + εi

where εi represents the random error and εi ∼ N(0, σ2
Y |X).
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Interpretation of coefficients:

µY |X = β0 + β1X1 + β2X2 + . . .+ βkXk

Interpretation of coefficients:

Intercept: β0 is the expected value of Y when all other predictors,
X1, . . . ,Xk , are equal to 0.

Slope: βj is the expected change in Y associated with a one-unit
change in Xj , assuming all other predictors are held constant.

For example, say we are interested in the change in Y for a one unit
increase in X1, assuming all other predictors are held constant. Then

µY |X1=x+1 − µY |X1=x = (β0 + β1(x + 1) + β2c2 + . . .+ βkck)
−(β0 + β1x + β2c2 + . . .+ βkck)

= β1
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Least Squares Estimation (LSE) for Multiple Linear
Regression

As in SLR, use data (Yi ,X1i , . . . ,Xki ; i = 1, . . . , n) to estimate the
parameters β0, β1, β2, . . . , βk .

The model that represents the fitted values is:
Ŷ = β̂0 + β̂1X1 + . . .+ β̂kXk

Differences between fitted values and observed values are called
residuals

êi = Yi − Ŷi = Yi − β̂0 + β̂1X1i + . . .+ β̂kXki

Coefficient estimates are chosen to minimize the residual sum of
squares (also called error sum of squares).

RSS = SSE =
n∑

i=1
ê2

i

The RSS measures the "left-over" variability in the response after
accounting for the variability explained by the predictors X1, . . . ,Xk .
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MLR Assumptions
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MLR Assumptions

The assumptions for multiple linear regression are the same as for simple
linear regression:

Existence: For each combination of values of the predictors
(X1,X2, . . . ,Xk), Y is a random variable with a certain probability
distribution having finite mean and variance.

Linearity: The mean value of Y for each specific combination of
values of X1,X2, . . . ,Xk is a linear function of X1,X2, . . . ,Xk

Independence: Yi are statistically independent

Homoscedasticity: The variance of Y , σ2
Y |X is the same for any fixed

combination of X1,X2, . . . ,Xk .

Normality: For any fixed combination of X1,X2, . . . ,Xk , the residuals
are normally distributed. (This assumption is primarily used for
hypothesis testing and CIs.)
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MLR Example
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MLR Example: Starting with SLR

In the Rosner FEV data set, let’s say we are interested in the effect of
smoking on FEV. We could naively fit a SLR model:
fev <- read.csv('FEV_rosner.csv')
slr <- glm( fev ~ smoke, data=fev )
summary(slr)

##
## Call:
## glm(formula = fev ~ smoke, data = fev)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7751 -0.6339 -0.1021 0.4804 3.2269
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.56614 0.03466 74.037 < 2e-16 ***
## smokesmoker 0.71072 0.10994 6.464 1.99e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.7075923)
##
## Null deviance: 490.92 on 653 degrees of freedom
## Residual deviance: 461.35 on 652 degrees of freedom
## AIC: 1633.8
##
## Number of Fisher Scoring iterations: 2
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Example: Starting with SLR

Least squares regression fitted model: ˆFEV = 2.57 + 0.71× smoker

Interpretation: There is an expected FEV increase of 0.71 for smokers
compared to non-smokers. Therefore, smokers have better lung function
than non-smokers (p<0.0001). (Does this make clinical sense?)
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Example: Control for age

We realize that smokers tend to be older than non-smokers, and that older
children tend to have higher FEV than young children. (Thus, age has
potential to be a confounder.) We decide to control for age in our analysis.

New question: For a group of children at a given age, do smokers have
lower FEV compared to non-smokers?

Option 1: Perform a stratified analysis and compare smokers to
non-smokers within age strata. Note: requires that we break up age
into strata, losing some information.

Option 2: With MLR, get a single estimate of the average effect of
smoking on FEV, adjusting for differences due to age.
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Option 1: Stratified analysis
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Option 2: Multiple Linear Regression
mlr <- glm( fev ~ smoke + age, data=fev )
summary(mlr)

##
## Call:
## glm(formula = fev ~ smoke + age, data = fev)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6653 -0.3564 -0.0508 0.3494 2.0894
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.367373 0.081436 4.511 7.65e-06 ***
## smokesmoker -0.208995 0.080745 -2.588 0.00986 **
## age 0.230605 0.008184 28.176 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.3192958)
##
## Null deviance: 490.92 on 653 degrees of freedom
## Residual deviance: 207.86 on 651 degrees of freedom
## AIC: 1114.3
##
## Number of Fisher Scoring iterations: 2
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MLR Example

Least squares regression line: ˆFEV = 0.37 + 0.23× age− 0.21× smoker.

Interpretation: On average,
FEV is 0.21 liters lower in
smokers compared to
non-smokers when age is held
constant. Thus, we conclude
smokers have worse lung
function compared to
non-smokers of the same age
(p=0.0099).

BIOS 6611 (CU Anschutz) Multiple Linear Regression (MLR) Introduction: Motivation, Assumptions, ExampleWeek 10 20 / 25



Preview: Interaction terms

Note that the effect of age on FEV is assumed to be the same for smokers
and non-smokers.

Likewise, the effect of smoking on FEV is assumed to be the same for every
age.

We can relax these restrictions by including interaction terms, which we will
learn about in a future lecture.
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Adjusted R2
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R2 refresher

Recall the coefficient of determination, or “R-squared”:

R2 = SSTotal − SSError
SSTotal

= SSModel
SSTotal

which gives the proportion of variance of Y that can be explained by
X1, . . . ,Xk .

When more explanatory variables are added to the model, R2 automatically
increases. Therefore, we cannot use R2 to compare models with differing
numbers of predictors.
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Adjusted R2

The adjusted R2 accounts for this phenomenon. It is a modification of R2

that adjusts for the number of explanatory terms in the model (k) relative
to the number of data points (n).

R2
adj = 1− (1− R2) n − 1

n − k − 1

= 1− SSError/(n − k − 1)
SSTotal/(n − 1)

R2
adj can be negative, and will always be less than or equal to R2. It will

only increase when the increase in R2 is more than one would expect to see
by chance. R2

adj is more appropriate when evaluating model fit and when
comparing alternative models with differing number of predictors.
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MLR Introduction Summary

In summary:

MLR allows us to investigate multiple predictors of interest, to control
for confounders and effect modifiers, and to gain precision.

The MLR model has the same assumptions of the simple linear
regression: existence, linearity, independence, homoscedasticity

Coefficient estimates are obtained my minimizing the residual sum of
squares

We looked at an example where controlling for age, a confounder,
changed our conclusion about effect of the predictor of interest,
smoking status, on the FEV.

The adjusted R2 gives us information about the amount of variability
explained by the model, while accounting for the addition of more
explanatory variables.
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