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Linear Regression Assumptions Revisited
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(Multiple) Linear Regression Assumptions

Existence: For any combination of X1,X2, ...,Xk , Y is a random variable
with a certain probability distribution having finite mean and variance.

Independence: The Y -values are statistically independent of one another.

Linearity: The mean value of Y for each combination of X1,X2, ...,Xk is a
linear function of X1,X2, ...,Xk .

Homoscedasticity: The variance of Y (σ2
Y |X1,X2,...,Xk

) is the same for any
fixed combination of X1,X2, ...,Xk .

Normal Distribution: For any fixed combination of X1,X2, ...,Xk , the
residuals are normally distributed.
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Regression Diagnostic Plots
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Regression Diagnostic Plots

Many of the same plots we introduced for simple linear regression can be
used for multiple linear regression, with a few additional considerations:

Y -X scatterplot → partial regression plot
Scatterplot of the residuals and X → scatterplot of Ŷ and residuals
Histogram of the residuals
PP or QQ plot of the residuals

We used jackknife residuals in our plots, but other types of residuals can
also be used.
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Partial Regression Plot

This will replace our Y-X scatterplot from simple linear regression. A
partial regression plot (also known as a partial plot, added variable plot,
or adjusted variable plot) characterizes the relationship between the
dependent variable (Y ) and an independent variable (X ), adjusting for
other covariates in the model (C1,C2, ...,Ck).

We can calculate the partial regression plot by following 3 steps:
1 Perform a regression of Y on C1,C2, ...,Ck and save the observed

residuals.
2 Perform a regression of X on C1,C2, ...,Ck and save the observed

residuals.
3 Plot the residuals from step (1) and step (2).

BIOS 6611 (CU Anschutz) MLR: Diagnostic Plots and Multicollinearity Week 10 7 / 18



Partial Regression Plot Example
fev <- read.csv('FEV_rosner.csv')
mod1 <- glm( fev ~ age + height, data=fev )

# Partial Plot for Age
age_step1 <- glm(fev ~ height, data=fev)
age_step2 <- glm(age ~ height, data=fev)
plot(x=residuals(age_step2), y=residuals(age_step1),

main='Partial Plot for Age', ylab='Partial Dependent Residual',
xlab='Partial Regressor Residual')

# Add SLR line to show slope
abline(lm(residuals(age_step1) ~ residuals(age_step2)))

# Partial Plot for Height
height_step1 <- glm(fev ~ age, data=fev)
height_step2 <- glm(height ~ age, data=fev)
plot(x=residuals(height_step2), y=residuals(height_step1),

main='Partial Plot for Height', ylab='Partial Dependent Residual',
xlab='Partial Regressor Residual')

# Add SLR line to show slope
abline(lm(residuals(height_step1) ~ residuals(height_step2)))
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Partial Regression Plot Example
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Partial Regression Plot Example

The slope of the partial plot will be the same as the slope of X in the MLR
model of Y on X ,C1,C2, ...,Ck . In other words, a simple linear regression
of the residuals from step (1) on step (2) will result in the same estimate of
β̂X from the MLR model.
round(summary(glm( fev ~ age + height, data=fev ))$coefficients,4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.6105 0.2243 -20.5576 0
## age 0.0543 0.0091 5.9609 0
## height 0.1097 0.0047 23.2628 0
round(summary(glm(residuals(age_step1) ~ residuals(age_step2)))$coefficients,4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0000 0.0164 0.0000 1
## residuals(age_step2) 0.0543 0.0091 5.9655 0
round(summary(glm(residuals(height_step1) ~ residuals(height_step2)))$coef,4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0000 0.0164 0.0000 1
## residuals(height_step2) 0.1097 0.0047 23.2806 0

BIOS 6611 (CU Anschutz) MLR: Diagnostic Plots and Multicollinearity Week 10 10 / 18



Scatterplot of Ŷ and Residuals

This will replace our scatterplot of the residuals by X . By plotting the
scatterplot of our residuals by Ŷ we can account for the relationship
amongst all our independent variables, X1,X2, ...,Xk .

We can use this plot to check similar assumptions regarding linearity and
homoscedasticity that we evaluated before:

Do the residuals appear to jump around a residual of 0 for all values of
Ŷ (linearity assumption)
Do the residuals form a horizontal band around the 0 line?
(homoscedasticity assumption)
Do any points seem to be extremely large/small? (potential outliers,
more on this later!)
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Scatterplot of Ŷ and Residuals Example
par(mar=c(4.1,4.1,1.1,1.1))
plot(x=predict(mod1), y=rstudent(mod1),

xlab='Predicted Value', ylab='Jackknife Residual')
abline(h=0, lty=2)

1 2 3 4

−
2

0
2

4

Predicted Value

Ja
ck

kn
ife

 R
es

id
ua

l

BIOS 6611 (CU Anschutz) MLR: Diagnostic Plots and Multicollinearity Week 10 12 / 18



Scatterplot of Ŷ and Residuals Example
mod2 <- glm( log(fev) ~ age + height, data=fev)
plot( x=predict(mod2), y=rstudent(mod2),

xlab='Predicted Value', ylab='Jackknife Residual')
abline(h=0, lty=2)
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Multicollinearity
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Multicollinearity

Collinearity is where we have two explanatory variables with a linear
association.

Multicollinearity is where we have two or more explanatory variables that
are highly linearly related.

In general, this suggests we have highly correlated predictors. At the
extreme, one predictor may be a linear combination of other predictors (e.g.,
X3 = 2X1 − X2).

This is problematic for a few reasons:

It can be difficult to determine the true effect of each predictor on the
outcome.
It can lead to poorly estimated coefficients and standard errors (i.e.,
misleading p-values or confidence intervals).
The overall F-test may provide a significant result even if each
individual predictor is not significant.
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Evaluating Multicollinearity

The variance inflation factor (VIF) is often used to measure collinearity
in the context of multiple linear regression. It is computed for the j th

predictor variable as:
VIFj = 1

1− R2
j

where R2
j is the coefficient of determination based on regressing Xj as the

outcome on the remaining k − 1 predictors.

A rule of thumb is to be concerned with a VIF > 10, which corresponds to
an R2

j > 0.9.
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Addressing Multicollinearity

If a VIF indicates multicollinearity. . .

Consider if it makes sense (interaction or polynomial terms are
expected to be correlated without additional transformations)

Choose variable with largest adjusted R squared in the model

Create a new variable where appropriate (BMI from height and weight)

PCA of the variables (for cases with a larger # of covariates)
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Multicollinearity Examples
library(car) # load car package for vif()

mod_vif1 <- glm( fev ~ age + height + sex + smoke, data=fev)
vif(mod_vif1)

## age height sex smoke
## 3.019010 2.829728 1.060228 1.209564
mod_vif2 <- glm( fev ~ age + I(age^2) + height, data=fev)
vif(mod_vif2)

## age I(age^2) height
## 43.234975 34.050491 3.336106
fev$newvar <- 3*fev$height + sqrt(fev$age)
mod_vif3 <- glm( fev ~ age + sex + height + newvar, data=fev)
vif(mod_vif3)

## age sex height newvar
## 9.958277e+01 1.064032e+00 1.457695e+05 1.518023e+05
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