MLR: Diagnostic Plots and Multicollinearity

BIOS 6611

CU Anschutz

Week 10

1 Linear Regression Assumptions Revisited

3 Multicollinearity

Linear Regression Assumptions Revisited

(Multiple) Linear Regression Assumptions

Existence: For any combination of $X_1, X_2, ..., X_k$, Y is a random variable with a certain probability distribution having finite mean and variance.

Independence: The Y-values are statistically independent of one another.

Linearity: The mean value of Y for each combination of $X_1, X_2, ..., X_k$ is a linear function of $X_1, X_2, ..., X_k$.

Homoscedasticity: The variance of $Y(\sigma_{Y|X_1,X_2,...,X_k}^2)$ is the same for any fixed combination of $X_1, X_2, ..., X_k$.

Normal Distribution: For any fixed combination of $X_1, X_2, ..., X_k$, the residuals are normally distributed.

Regression Diagnostic Plots

Regression Diagnostic Plots

Many of the same plots we introduced for simple linear regression can be used for multiple linear regression, with a few additional considerations:

- Y-X scatterplot \rightarrow partial regression plot
- Scatterplot of the residuals and $X \rightarrow$ scatterplot of \hat{Y} and residuals
- Histogram of the residuals
- PP or QQ plot of the residuals

We used **jackknife residuals** in our plots, but other types of residuals can also be used.

Partial Regression Plot

This will replace our Y-X scatterplot from simple linear regression. A **partial regression plot** (also known as a partial plot, added variable plot, or adjusted variable plot) characterizes the relationship between the dependent variable (Y) and an independent variable (X), adjusting for other covariates in the model $(C_1, C_2, ..., C_k)$.

We can calculate the partial regression plot by following 3 steps:

- Perform a regression of Y on $C_1, C_2, ..., C_k$ and save the observed residuals.
- Perform a regression of X on C₁, C₂, ..., C_k and save the observed residuals.
- Plot the residuals from step (1) and step (2).

Partial Regression Plot Example

```
fev <- read.csv('FEV rosner.csv')</pre>
mod1 <- glm( fev ~ age + height, data=fev )</pre>
# Partial Plot for Age
age_step1 <- glm(fev ~ height, data=fev)</pre>
age_step2 <- glm(age ~ height, data=fev)</pre>
plot(x=residuals(age_step2), y=residuals(age_step1),
     main='Partial Plot for Age', ylab='Partial Dependent Residual',
     xlab='Partial Regressor Residual')
# Add SLR line to show slope
abline(lm(residuals(age_step1) ~ residuals(age_step2)))
# Partial Plot for Height
height_step1 <- glm(fev ~ age, data=fev)</pre>
height_step2 <- glm(height ~ age, data=fev)</pre>
plot(x=residuals(height_step2), y=residuals(height_step1),
     main='Partial Plot for Height', ylab='Partial Dependent Residual',
     xlab='Partial Regressor Residual')
# Add SLR line to show slope
abline(lm(residuals(height_step1) ~ residuals(height_step2)))
```

Partial Regression Plot Example

Partial Regressor Residual

BIOS 6611 (CU Anschutz)

MLR: Diagnostic Plots and Multicollinearity

Partial Regressor Residual

Partial Regression Plot Example

BIOS 6611 (CU Anschutz)

The slope of the partial plot will be the same as the slope of X in the MLR model of Y on X, $C_1, C_2, ..., C_k$. In other words, a simple linear regression of the residuals from step (1) on step (2) will result in the same estimate of $\hat{\beta}_X$ from the MLR model.

round(summary(glm(fev ~ age + height, data=fev))\$coefficients,4)

##	Estimate St	d. Error	t value	Pr(> t)	
<pre>## (Intercept)</pre>	-4.6105	0.2243	-20.5576	0	
## age	0.0543	0.0091	5.9609	0	
## height	0.1097	0.0047	23.2628	0	
round(summary(zlm(residual	s(age ste	no1) ~ res	iduals(age	<pre>step2)))\$coefficients.</pre>

##	Estimate	Std. Error	t value	Pr(> t)
<pre>## (Intercept)</pre>	0.0000	0.0164	0.0000	1
<pre>## residuals(age_step2)</pre>	0.0543	0.0091	5.9655	0
round(summary(glm(residu	als(heigh	t_step1) ~	residual	<pre>s(height_step2)))\$coef,4)</pre>

##	Estimate	Std. Error	t value	Pr(> t)
## (Intercept)	0.0000	0.0164	0.0000	1
<pre>## residuals(height_step2)</pre>	0.1097	0.0047	23.2806	0

MLR: Diagnostic Plots and Multicollinearity

Week 10

10/18

Scatterplot of \hat{Y} and Residuals

This will replace our scatterplot of the residuals by X. By plotting the scatterplot of our residuals by \hat{Y} we can account for the relationship amongst all our independent variables, $X_1, X_2, ..., X_k$.

We can use this plot to check similar assumptions regarding linearity and homoscedasticity that we evaluated before:

- Do the residuals appear to jump around a residual of 0 for all values of \hat{Y} (*linearity* assumption)
- Do the residuals form a horizontal band around the 0 line? (*homoscedasticity* assumption)
- Do any points seem to be extremely large/small? (potential outliers, more on this later!)

Scatterplot of \hat{Y} and Residuals Example

BIOS 6611 (CU Anschutz)

MLR: Diagnostic Plots and Multicollinearity

Scatterplot of \hat{Y} and Residuals Example

BIOS 6611 (CU Anschutz)

MLR: Diagnostic Plots and Multicollinearity

Multicollinearity

Multicollinearity

Collinearity is where we have **two** explanatory variables with a linear association.

Multicollinearity is where we have **two or more** explanatory variables that are highly linearly related.

In general, this suggests we have highly correlated predictors. At the extreme, one predictor may be a linear combination of other predictors (e.g., $X_3 = 2X_1 - X_2$).

This is problematic for a few reasons:

- It can be difficult to determine the true effect of each predictor on the outcome.
- It can lead to poorly estimated coefficients and standard errors (i.e., misleading p-values or confidence intervals).
- The overall F-test may provide a significant result even if each individual predictor is not significant.

Evaluating Multicollinearity

The variance inflation factor (VIF) is often used to measure collinearity in the context of multiple linear regression. It is computed for the j^{th} predictor variable as:

$$VIF_j = rac{1}{1-R_j^2}$$

where R_j^2 is the coefficient of determination based on regressing X_j as the outcome on the remaining k - 1 predictors.

A rule of thumb is to be concerned with a VIF > 10, which corresponds to an $R_j^2 > 0.9$.

Addressing Multicollinearity

If a VIF indicates multicollinearity...

- Consider if it makes sense (interaction or polynomial terms are expected to be correlated without additional transformations)
- Choose variable with largest adjusted R squared in the model
- Create a new variable where appropriate (BMI from height and weight)
- PCA of the variables (for cases with a larger # of covariates)

Multicollinearity Examples

library(car) # load car package for vif()

```
mod_vif1 <- glm( fev ~ age + height + sex + smoke, data=fev)
vif(mod_vif1)</pre>
```

age height sex smoke
3.019010 2.829728 1.060228 1.209564
mod_vif2 <- glm(fev ~ age + I(age^2) + height, data=fev)
vif(mod_vif2)</pre>

```
## age I(age<sup>2</sup>) height
## 43.234975 34.050491 3.336106
fev$newvar <- 3*fev$height + sqrt(fev$age)
mod_vif3 <- glm( fev ~ age + sex + height + newvar, data=fev)
vif(mod_vif3)
```

age sex height newvar ## 9.958277e+01 1.064032e+00 1.457695e+05 1.518023e+05