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The Problem

We may find ourselves in different cases where we wish to conduct more
than one statistical test. For example,

there is an overall/global hypothesis, but we then want to do post-hoc
testing between groups (e.g., a multiple comparisons problem)
in genomics we may wish to evaluate 1000s of SNPs in one study (e.g.,
a multiple testing problem)
for a trial, we may define multiple primary outcomes of interest. (e.g.,
potentially both a multiple testing and comparisons problem)

Why is this problematic?

When we perform multiple statistical tests, the true overall type I error rate
is larger than the type I error rate for the individual tests. These are known
as family-wise (overall) and marginal type I error rates, respectively.
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The Type I Error Trade-off

If we set α = Pr(Reject H0|H0 is true) = 0.05 for a single test, then
1− α = Pr(Fail to reject H0|H0 is true) = 0.95. For k tests, the
family-wise type I error rate is then 1− (0.95)k .

The following table displays the probability of rejecting at least one of the
pairwise comparisons using a significance level of 0.05:

k FWER
1 0.050
3 0.143
10 0.401
50 0.923

We see that as the number of tests increases we are more likely to have a
true overall type I error rate that is far greater than the individual test type
I error rate.
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The Challenge

Although post-hoc multiple comparison procedures control the overall type I
error rates, they inflate type II errors (the probability of failing to reject the
null hypothesis when the alternative is true). With appropriate software,
multiple comparisons can be incorporated into sample size and power
analyses at the design phase.

There is generally not a single “correct” approach. If comparisons of
interest are planned in advance (it also helps to limit comparisons to those
with the most scientific relevance), certain procedures may be more
appropriate (e.g., the LSD procedure). If a study is exploratory or
hypothesis generating you may not be as worried about multiple testing.
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Some of the Post-Hoc Comparison Methods

Many different post-hoc comparisons have been developed to better control
the overall type I error rate (from less to more conservative):

Least Significant Difference (LSD): A sequential pairwise test of group means
after ANOVA.
Duncan’s Multiple Range Test: Alternative range test that uses the harmonic
mean of the sample size when the sample sizes are unequal.
False Discovery Rate (FDR): An approach to limit the proportion of false positive
results to a reasonable level.
Dunnett’s Test: Used to compare several groups to a single control group; often
used in clinical trials.
Tukey’s Honestly Significant Difference (HSD) Test: Uses the studentized
range distribution to make all pairwise comparisons.
Bonferroni Adjustment: Can be used for any C independent comparisons.
Essentially you conclude that the p-value is significant if it is less than α

C instead of
α. This is conservative, especially if the tests are not independent.
Scheffé’s Test: Can be used for any contrast of interest (not just pairwise
comparisons), but can be very conservative.
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False Discovery Rate
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FDR Motivation

In some study settings several distinct hypothesis tests may be performed
(e.g. genomic and proteomic experiments). The Bonferroni correction is
sometimes used in these settings but can be overly conservative when 100s
or 1000s of tests are performed.

One commonly employed, but not necessarily optimal, solution is to apply
the False Discovery Rate (FDR) correction (latter part of section 12.4 in
Rosner). The idea is to limit the number of falsely positive results to a
reasonable level (e.g. 5% or 10%).

The FDR is still conservative when the tests are not independent.
Permutations and bootstrap sampling of the original data to find adjusted
p-values are good improvements over the FDR method since they work with
the inherent dependence of tests in the original data.
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An FDR Algorithm

A few different algorithms exist for false discovery rate calculations. The
popular Benjamini-Hochberg algorithm for k tests is

1 Calculate the p-values for all comparisons/tests.
2 Rank the comparisons by p-values from smallest to largest.
3 Calculate q = kp/rank for each test.
4 The FDR value for each test is the minimum of the q values for that

test and all tests ranked higher than it.
5 The null hypothesis is rejected for all FDR values that are less than the

pre-specified acceptable level (e.g. 5%, 10%).
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FDR Example

We have conducted a study to investigate the relationship of 14 genes
between cases for a given disease and controls without the disease. After
conducting 14 tests we have the following results:

Test Gene p-value
1 A3 0.4883
2 A4 0.3169
3 HOXA5 0.4156
4 A7 0.2971
5 HOXA9 0.6393
6 A10 0.5606
7 B3 0.5842
8 B6 0.9442
9 B9 0.4741
10 MEIS1 0.7937
11 MEIS2 0.0451
12 PBX2 0.7554
13 PBX3 0.9901
14 ABC 0.0001
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FDR Example

Based on our Benjamini-Hochberg algorithm:

Test p-value Gene Rank q (=kp/rank) FDR: MIN(q
for rank or higher)

14 0.0001 ABC 1 0.0014 0.0014
11 0.0451 MEIS2 2 0.3157 0.3157
4 0.2971 A7 3 1.3865 0.8950
2 0.3169 A4 4 1.1092 0.8950
3 0.4156 HOXA5 5 1.1637 0.8950
9 0.4741 B9 6 1.1062 0.8950
1 0.4883 A3 7 0.9766 0.8950
6 0.5606 A10 8 0.9811 0.8950
7 0.5842 B3 9 0.9088 0.8950
5 0.6393 HOXA9 10 0.8950 0.8950
12 0.7554 PBX2 11 0.9614 0.9260
10 0.7937 MEIS1 12 0.9260 0.9260
8 0.9442 B6 13 1.0168 0.9901
13 0.9901 PBX3 14 0.9901 0.9901

ABC is the only significant gene remaining after FDR, with MEIS2 no longer significant.
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Multiple Corrections in R and SAS

R and SAS have functions we can use to implement multiple testing
corrections to avoid having to implement corrections by hand each time we
wish to account for multiple corrections.

In SAS you can use the PROC MULTTEST to implement both
family-wise-controlling (e.g., Bonferroni, permutation, bootstrap) or
FDR-controlling (e.g., FDR, FDR with permutation, FDR with bootstrap)
corrections.

In R, you can use p.adjust to correct using methods like the Bonferroni or
FDR. The output represents adjusted p-values for multiple comparisons, so
even the Bonferroni will present an adjusted p-value (instead of just
comparing the raw p-value to α/C).
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FDR Example in R

pvec <- c('0.0001','0.0451','0.2971','0.3169','0.4156','0.4741','0.4883',
'0.5606','0.5842','0.6393','0.7554','0.7937','0.9442','0.9901')

round(cbind('fdr'=p.adjust(pvec, method='fdr'),
'bon'=p.adjust(pvec, method='bonferroni')),4)

## fdr bon
## [1,] 0.0014 0.0014
## [2,] 0.3157 0.6314
## [3,] 0.8950 1.0000
## [4,] 0.8950 1.0000
## [5,] 0.8950 1.0000
## [6,] 0.8950 1.0000
## [7,] 0.8950 1.0000
## [8,] 0.8950 1.0000
## [9,] 0.8950 1.0000
## [10,] 0.8950 1.0000
## [11,] 0.9260 1.0000
## [12,] 0.9260 1.0000
## [13,] 0.9901 1.0000
## [14,] 0.9901 1.0000
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