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Polynomial Models
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Polynomial Models with One Variable

A kth order polynomial in one variable, x , is an expression of the following
form:

y = c0 + c1x + c2x2 + . . .+ ckxk

in which the c’s and the k (which much be a nonnegative whole number)
are constants.

The statistical model is an expression of the form:

Y = β0 + β1X + β2X 2 + . . .+ βkX k + ε, where ε ∼ N
(
0, σ2

Y |X

)
The statistical model is a linear regression model because Y is a linear
function of the β’s.
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Polynomial Models

Polynomial models are useful:

In situations where the analyst knows that curvilinear effects are
present in the true response function.
As approximating functions to unknown and possibly very complex
nonlinear relationships.

Important considerations when using polynomial models include:

Selecting the order of the model (model selection strategy)
Extrapolation
Ill-conditioning
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Motivating Example

From our KKNR textbook, a laboratory study is undertaken to determine
the relationship between equally spaced doses (X ) of a certain drug and
weight gain (Y ). 24 laboratory animals of the same sex, age, and size are
selected and 3 animals are randomly assigned to each dose group.
The results from the study were

Wgt Gain (Y )
X 1 2 3
1 0.9 0.9 0.8
2 1.1 1.1 1.2
3 1.6 1.6 1.4
4 2.3 2.1 2.2
5 3.5 3.4 3.2
6 5 4.5 4.8
7 6.6 6.7 6.7
8 8.7 8.6 8.8
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Model 1: No Polynomial Terms

Starting with a simple linear regression model with no polynomial terms, we
have:
wtgain <- data.frame( dose=rep(1:8, each=3),

wgtgain=c(0.9,0.9,0.8,1.1,1.1,1.2,1.6,1.6,1.4,2.3,2.1,2.2,
3.5,3.4,3.2,5,4.5,4.8,6.6,6.7,6.7,8.7,8.6,8.8) )

lm1 <- lm( wgtgain ~ dose, data=wtgain)
summary(lm1)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.347619 0.36361822 -3.706137 1.231652e-03
## dose 1.111508 0.07200714 15.436080 2.755834e-13

Intercept: The predicted weight gain with the dose is 0 is -1.35, however
this is beyond the range of our data.

Slope: There is a significant association between dose and weight gain,
where for everyone one unit increase in dose, weight gain increases by 1.11
units (95% CI: 0.96, 1.26), on average (p<0.001).
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Model 1: Residual Plot
plot(x=predict(lm1) ,y=rstudent(lm1),

xlab='Predicted Value', ylab='Studentized Residual',
cex.lab=1.5, cex.axis=1.5, cex=1.5, ylim=c(-1.5,2))

abline( h=0 )
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Does a straight-line model fit the data?
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Model 2: Quadratic Model

What if we fit a polynomial model of order 2?
wtgain$dose2 <- wtgain$dose^2
lm2 <- lm( wgtgain ~ dose + dose2, data=wtgain)
lm2_alt <- lm( wgtgain ~ dose + I(dose^2), data=wtgain) #equivalent coding
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Model 2: Quadratic Model
summary(lm2)

##
## Call:
## lm(formula = wgtgain ~ dose + dose2, data = wtgain)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.32083 -0.06964 0.01230 0.10020 0.17917
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.155357 0.102423 11.280 2.26e-10 ***
## dose -0.390278 0.052219 -7.474 2.41e-07 ***
## dose2 0.166865 0.005664 29.461 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1272 on 21 degrees of freedom
## Multiple R-squared: 0.998, Adjusted R-squared: 0.9978
## F-statistic: 5248 on 2 and 21 DF, p-value: < 2.2e-16
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Model 2: Quadratic Model

Is the overall regression model significant? That is, is more of the variation
in Y explained by the second-order model than by ignoring X completely
and just using Ȳ ?

Does the second-order model provide significantly more predictive power
than the straight-line model?
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Model 1 vs. Model 2

Model 1 (SLR): Ŷ = −1.35 + 1.11X1

Source Sums of Squares Degrees of Freedom Mean Square F-value p-value
Model 155.667 1 155.667 238.273 <0.001
Error 14.373 22 0.653
Total 170.040 23

Model 2 (Quadratic Model): Ŷ = 1.16 + −0.39X1 + 0.17X 2
1

Source Sums of Squares Degrees of Freedom Mean Square F-value p-value
Model 169.70 2 84.85 5247.78 <0.001
Error 0.34 21 0.016
Total 170.04 23

What happened to our β’s?

What happened to the MSE?
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Should I Add Higher Order Terms?

Given that a second-order model is more appropriate than a straight-line
model, should we add higher order terms to the second-order model?

It is possible adding higher order terms may be beneficial, but we must
balance this with our consideration of identifying a parsimonious model.

As we saw with our example, we can evaluate the potential significance by
using a partial F -test or a t-test. But we should not only rely on a low
p-value, but also examine the residual plots and consider the context of our
problem. In cases where we have replicates at each level, we have additional
tools.
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Testing Lack of Fit with Replicates
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Estimating MSE and Lack of Fit

Recall that we use MSE to estimate σ2
Y |X , which is calculated as

σ̂2
Y |X =

∑n
i=1 (Yi − β̂0 − β̂1Xi )2

n − 2 = SSError
n − 2 = MSError

The MSE will only provide an unbiased estimate of the error variance when
the hypothesized model is correct, otherwise σ̂2

Y |X > σ2
Y |X .

If the model is incorrect, then two factors contribute to the inflation of the
SSE:

1 The true variability in Y (pure error)
2 Error due to fitting an incorrect model (lack of fit error)

With replicate observations we can formally test for lack of fit.
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Estimating Pure Error By Hand
Wgt Gain (Y ) SSPE

X 1 2 3 Ȳx
∑

m(Ymx − Ȳx )2 df
1 0.9 0.9 0.8 0.866667 0.006667 2
2 1.1 1.1 1.2 1.133333 0.006667 2
3 1.6 1.6 1.4 1.533333 0.026667 2
4 2.3 2.1 2.2 2.200000 0.020000 2
5 3.5 3.4 3.2 3.366667 0.046667 2
6 5.0 4.5 4.8 4.766667 0.126667 2
7 6.6 6.7 6.7 6.666667 0.006667 2
8 8.7 8.6 8.8 8.700000 0.020000 2∑

= 0.26
∑

= 16
MSPE = 0.26/16 = 0.01625

So, to test the linear trend using the “pure error” and Model 1 results:

t =
β̂dose√

MSE(pure)
MSE(pure+LOF ) × (SE(β̂dose))2

=
1.11151√

0.01625
0.65331 × (0.072012)2

= 97.87

Our previous t = 15.44 from Model 1. The variance was 40 times higher due to
lack of fit error from the straight line model.
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Estimating Pure Error via a Model

We can also obtain the “pure error” by fitting a saturated model (i.e., a
model that includes a dummy code for each level k of X ):
lm_pure <- lm( wgtgain ~ as.factor(dose), data=wtgain)
coef(lm_pure)

## (Intercept) as.factor(dose)2 as.factor(dose)3 as.factor(dose)4
## 0.8666667 0.2666667 0.6666667 1.3333333
## as.factor(dose)5 as.factor(dose)6 as.factor(dose)7 as.factor(dose)8
## 2.5000000 3.9000000 5.8000000 7.8333333
linreg_anova_func(lm_pure, ndigits=3)

Source Sums of Squares Degrees of Freedom Mean Square F-value p-value
Model 169.78 7 24.254 1492.568 <0.001
Error 0.26 16 0.016
Total 170.04 23

Our estimated MSE from the ANOVA table for this saturated model
matches our “by hand” calculation of the pure error.

BIOS 6611 (CU Anschutz) Polynomial Regression Week 12 17 / 25



Lack of Fit

The difference in the regression sum of squares between the lower-order
model being considered and the full model containing all higher-order terms
is the lack of fit sum of squares.

The lack of fit test statistic is a partial F test for testing the addition of
the higher-order terms (up to the highest order) to the polynomial model:

F = [SSmodel (full) − SSmodel (reduced)]/k
MSerror (full) ∼ Fk,n−p−k−1

Like before, we will let n = number of observations, p = number of IVs in
the reduced model, and k = number of IVs removed from the full model.

Note: The SSE of the highest-order polynomial model is equivalent to the
SSE for a model including a dummy variable for each dose level.
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Testing Lack of Fit for the Straight-Line Model

For our example, the highest order polynomial we could fit is 7 (i.e., number
of dose levels minus 1). The lack of fit test for Model 1 (straight-line
model) tests

H0 : βquad = βcubic = ... = βseptic = 0, or equivalently

H0 : βx2 = βx3 = ...βx7 = 0.
The partial F-test is:

F = [SSmodel (full) − SSmodel (reduced)]/k
MSerror (full) = [169.78 − 155.667]/6

0.01625 = 14.113/6
0.01625 = 144.75

We can then compare this to an F6,16 distribution for our critical value and
to calculate a p-value. The critical value is qf(0.95,6,16)=2.741 and
p=pf(144.75,6,16, lower.tail=F)=4.9947211 × 10−13.

Since p<0.001 and F>2.741, we reject H0. At least one higher order term
is not equal to 0.
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Testing Lack of Fit for the Quadratic Model

The lack of fit test for Model 2 (quadratic model) tests

H0 : βcubic = ... = βseptic = 0, or equivalently

H0 : βx3 = ...βx7 = 0.
The partial F-test is:

F = [SSmodel (full) − SSmodel (reduced)]/k
MSerror (full) = [169.78 − 169.70]/5

0.01625 = 0.08/5
0.01625 = 0.98

We can then compare this to an F5,16 distribution for our critical value and
to calculate a p-value. The critical value is qf(0.95,5,16)=2.852 and
p=pf(0.98,5,16, lower.tail=F)=0.46.

Since p>0.05 and F<2.741, we fail to reject H0. This suggests no higher
order terms are needed, and the quadratic model has the “best fit”.
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Hierarchical Modeling and Collinearity
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Hierarchical Models

Consider the polynomial model of order 2 (the quadratic model):

Y = β0 + β1X + β2X 2 + ε

Suppose we fit this model and the coefficient β̂1 is not significant, but β̂2 is.
If we removed the X term our reduced model becomes:

Y = β0 + β2X 2 + ε

But suppose we then made a location change in our predictor X , e.g.,
X + z , where z is some constant. The model would become:

Y = β0 + β2X 2 + 2β2Xz + β2z2 + ε

The first order X term has reappeared, so our model has effectively changed.
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Hierarchical Models

In general, location changes should not make any important changes to the
model, but in this case an additional term has been added.

For this reason, we should not remove lower order terms in the presence of
higher order terms (we do not want the conclusion to depend on the choice
of location).
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FEV Example - Polynomial Style
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Quadratic Removing 1st Order
with Quadratic Polynomial

1st Order Removed
Quadratic

For our FEV data set, we have
examples of different
polynomial models, including
one where we’ve removed the
first order term.

The best statistical model is
the cubic model (either via the
pure error F -test or by using
partial F -tests to compare the
quadratic, cubic, and quartic
models).

However, the behavior in the
cubic model’s tails may not
make scientific sense. This is a
good example of why plotting
the regression equation can be
a helpful step in identifying a
model that is both statistically
and scientifically meaningful.
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Collinearity Problems

Collinearity problems can arise in polynomial models that may make
evaluating the statistical significance challenging. Two possible solutions
include:

Centering the predictors if you are only interested in comparing a
first-order and second-order polynomial model (removes the
collinearity).

Orthogonal polynomial contrasts can be used and can be extended to
higher order comparisons. Supplemental lecture notes are provided on
this topic for your information, but this will not be on the homework or
exams.
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