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Methods of Estimation

There are three primary methods to estimation used in BIOS 6611/12 for
the different regression approaches explored:

1 Least Squares Estimation: our primary focus this semester where we
minimize the sum of square error

2 Maximum Likelihood Estimation: an approach that maximizes the
likelihood function to derive parameter estimates and is used for linear
mixed effects models to handle correlated data

3 Generalized Linear Models: an approach that ultimately provides us
with linear, logistic, Poisson, etc. regression models, often based on
maximum likelihood estimation

We will introduce these last two to begin building the framework for
extending to new regression approaches next semester.
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation for Regression
Parameters

Consider the multiple linear regression model fit using a random sample of n
individuals:

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ε

The observed data for the i th subject is given by
(Yi ,Xi1, ...,Xip), i = 1, 2, ..., n.

We will assume that the Yi are normally distributed with variance
Var(Yi) = σ2 not varying with i and that the X are measured without error.

We must also assume that the n random variables Y1,Y2, . . . ,Yn are
mutually independent.

Ultimately we wish to estimate θ = (β0, β1, β2, ...βp, σ
2).
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A Note About Our Independence Assumption for Yi

We are assuming that the n random variables Y1,Y2, . . . ,Yn are mutually
independent.

This allows the precise description of the joint distribution of the variables
(i.e., the likelihood function) solely on the basis of knowledge of the
separate behavior (i.e., the so-called marginal distribution) of each variable
in the set (the product of the marginal distributions).
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MLE Set-Up: Yi ’s PDF

Recall, the probability density function (pdf) for the normal
distribution is f (Y |µ, σ2) = 1√

2πσ2 exp
(
− 1

2σ2 (Yi − µ)2
)
.

In our regression framework E (Y ) = β0 + β1X1 + ...+ βpXp.

Noting that E (Y ) = µ, we can write the probability density function
for our multiple regression’s normally distributed random variable Yi as

f (Yi |β0, β1, ..., βp, σ
2) = 1√

2πσ2
exp
(
− 1

2σ2 (Yi − (β0 + β1Xi1 + ...+ βpXip))2
)

This corresponds to Y |(X1, ...,Xp) ∼ N(β0 + β1X1 + ...+ βpXp, σ
2)

(where we have replaced µ with our regression equation in
Y ∼ N(µ, σ2)).
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MLE Set-Up: The Likelihood Function

f (Yi |β0, β1, ..., βp, σ
2) is the probability density function for the i th

observation.

What we still need is the joint probability of Y1 = y1,Y2 = y2, ...,Yn = yn.
This is given by our likelihood of the data:

L(θ|Y) =L(β0, β1, ..., βp, σ
2|Y)

=
n∏

i=1

f (Yi |β0, β1, ..., βp, σ
2)

=
n∏

i=1

1√
2πσ2

exp
{
− 1

2σ2 (Yi − (β0 + β1Xi1 + ...+ βpXip))2
}

= 1
(2πσ2)n/2 exp

{
− 1

2σ2

n∑
i=1

(Yi − (β0 + β1Xi1 + ...+ βpXip))2

}
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MLE Set-Up: The Log-Likelihood

Here we will use two properties of the log: (1)
log(abc) = log(a) + log(b) + log(c) and (2) log(za) = a log(z).

Taking the (natural) log of the likelihood function makes it easier to work
with our complex expression.

log(L(β0, β1, ..., βp, σ
2|Y))

= log

{
1

(2πσ2)n/2 exp

(
− 1

2σ2

n∑
i=1

(Yi − (β0 + β1Xi1 + ...+ βpXip))2

)}

=−n
2 log(2π)− n

2 log(σ2)− 1
2σ2

n∑
i=1

(Yi − (β0 + β1Xi1 + ...+ βpXip))2

=−n
2 log(2π)− n

2 log(σ2)− 1
2σ2 (Y− Xβ)T (Y− Xβ)
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MLE of β

Now that we have the log-likelihood, we can take the first derivative with
respect to our parameters of interest (i.e., β0, β1, ..., βp, σ

2), set it equal to
0, and solve for our estimates.

For β, we will use the matrix form from the previous slide:

∂LL(β, σ2|Y)
∂β

∝ ∂

∂β
(Y− Xβ)T (Y− Xβ) = ∂SSError

∂β

This is identical to our least squares estimators! Therefore, the MLE
estimates for the β’s are the same.
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MLE of σ2

However, the ML estimator σ̂2 of σ2 results in a biased estimate:

∂LL(β, σ2|Y)
∂σ2 = −n

2

( 1
σ2

)
+ 1

2(σ2)2 (Y− Xβ)T (Y− Xβ) = 0

Solving now for the MLE:
n
2

( 1
σ̂2

)
= 1

2(σ̂2)2 (Y− Xβ̂)T (Y− Xβ̂)

nσ̂2 = (Y− Xβ̂)T (Y− Xβ̂)

σ̂2 = (Y−Xβ̂)T (Y−Xβ̂)
n = SSError

n = n−p−1
n

( SSError
n−p−1

)
= n−p−1

n σ̂2
Y |X = n−p−1

n MSE

We therefore see the maximum likelihood estimator of σ̂2 is biased:

E (σ̂2) =
(n − p − 1

n

)
σ2

Y |X 6= σ2
Y |X
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MLE of σ2

In ordinary least squares estimation, we had

σ̂2
Y |X = MSError = SSError

n − p − 1

For our maximum likelihood estimate, we have

σ̂2
MLE =

(n − p − 1
n

)
σ2

Y |X

As n, our sample size, increases, n−p−1
n results in only minor differences

between the OLS and MLE estimators. When sample sizes are small, there
can be larger differences in the two approaches.
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Generalized Linear Models

In our next lecture we will briefly introduce the concept of generalized linear
models (GLMs), a flexible framework for modeling a wide variety of
outcome types.
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