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Linear Regression in Matrix Notation
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Notation

One convention for identifying matrices and vectors is to use boldface
letters, with elements of the matrix denoted by lowercase subscripted letters:

Ar×c : matrix with r rows and c columns
aij : the element in the i th row and j th column
B1×c : row vector with 1 row and c columns
b1j or bj : j th element of the row vector
Cr×1: column vector with r rows and 1 column
ci1 or ci : i th element of the column vector

For example, A3×2 =

1 2
2 3
0 1

, where a11 = 1, a21 = 2, a31 = 0, etc.
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Linear Regression in Matrix Notation

So far we have discussed linear regression from an algebraic perspective with
Yi = β0 + β1xi1 + β2xi2 + . . .+ βpxip + εi , where εi ∼ N

[
0, σ2

Y |X

]
.

This can instead by defined in terms of matrices and vectors as Y = Xβ + ε:

Yn×1 =


Y1
Y2
...

Yn

 , Xn×[p+1] =


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp

 , β(p+1)×1 =


β0
β1
β2
...
βp

 , εn×1 =


ε1
ε2
...
εn


Substituting in these definitions we have


Y1
Y2
...

Yn

 =


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp



β0
β1
β2
...
βp

+


ε1
ε2
...
εn
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The Design Matrix

X is known as the design matrix.

Xn×[p+1] =


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
... . . . ...

1 xn1 xn2 · · · xnp


The first column represents the intercept term in our regression model. The
other columns represent the value of the given predictor for each i th

observation (i.e., row).

If we were fitting a cell means model, we would exclude the first column of
all 1’s.

The problem of missing data may be more apparent in the matrix approach,
since an NA or blank in our matrix would prevent any calculations.
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The Hat Matrix

The hat matrix (also known as the projection matrix) is a square n × n
matrix the maps the vector of observed values into a vector of fitted values.
We previously alluded to its existence when discussing types of residuals and
leverage for the diagonal hii (or hi) estimates.

It is the orthogonal (perpendicular) projection of Y onto the column space
of X.

The hat matrix can be calculated from the design matrix:

H = X(X>X)−1X>
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Deriving the Beta Coefficients

The sums of square due to error can be written as

SSE =
n∑

i=1

(
Yi − Ŷi

)2
= (Y− Xβ)> (Y− Xβ)

Similar to before, the least squares estimates are obtained by solving for β:

∂SSError
∂β

= −2X>Y + 2X>Xβ = 0

With a little rearranging we can arrive at our β̂:
−2X>Y + 2X>Xβ = 0

X>Xβ̂ = X>Y

(X>X)−1X>Xβ̂ = (X>X)−1X>Y

β̂ = (X>X)−1X>Y
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Deriving the Beta Coefficients

This estimate β̂ = (X>X)−1X>Y is only possible assuming (X>X)−1 exists.

If (X>X)−1 does not exist, a generalized inverse can be used for a singular
matrix. Generalized inverses have some, but not all, properties of the
ordinary inverse.

A quick rule of thumb is that (X>X)−1 exists if the regressors are linearly
independent (i.e., no column of the design matrix, X, is a linear
combination of the other columns).
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Simple Linear Regression in Matrix Notation

For simple linear regression, we only have one predictor:

Yn×1 =


Y1
Y2
...

Yn

 , Xn×2 =


1 x1
1 x2
...

...
1 xn



[
X>X

]
=
[
1 1 · · · 1
x1 x2 · · · xn

]
1 x1
1 x2
...

...
1 xn

 =
[

n
∑

xi∑
xi

∑
x2

i

]

X>Y =
[ ∑

yi∑
xiyi

]
, Y>Y =

[∑
y2

i
]
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Simple Linear Regression in Matrix Notation

(X>X)−1 can be shown to equal

(X>X)−1 = 1
nSXX

[ ∑
x2

i −
∑

xi
−
∑

xi n

]
= 1

SXX

[∑
x2

i
n −x̄
−x̄ 1

]

where

Det(X>X) = n
∑

x2
i −

(∑
xi
)2

= n
(∑

x2
i − nx̄2

)
= nSXX

Based on these quantities, we then have

β̂ =
[
β̂0
β̂1

]
=
(
X>X

)−1
X>Y = 1

SXX

[∑
x2

i
n −x̄
−x̄ 1

] [ ∑
yi∑

xiyi

]
=
[
ȳ − β̂1x̄

SXY
SXX

]
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Properties of the Least Squares Estimators

β̂ is an unbiased estimator of β if E (ε) = 0:
E(β̂) = E

[(
X>X

)−1 X>Y
]

= E
[(
X>X

)−1 X>(Xβ + ε)
]

= E
[(
X>X

)−1 X>Xβ +
(
X>X

)−1 X>ε)
]

= E
[
β +

(
X>X

)−1 X>ε)
]

= β

By the Gauss-Markov theorem, β̂ is the best linear unbiased estimator
(BLUE) of β.

Additionally, based on our assumption that the errors are normally
distributed, it can also be shown that β̂ is the maximum likelihood
estimator and the minimum variance unbiased estimator (MVUE) of β.
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Ŷ, Residuals, and Sums of Squares

The vector of fitted Y values, Ŷ, corresponding to the observed Y values,
Y, is

Ŷ = Xβ̂ = X(X>X)−1X>Y = HY

The residuals can be written as:

e = Y− Ŷ = Y− Xβ̂ = Y−HY = (I−H)Y

The error sums of squares is given by
SSError = (Y− Xβ̂)>(Y− Xβ̂) = Y>Y− β̂

>X>Y

The regression (model) sums of squares is given by
SSModel = β̂

>X>Y− nȲ 2

The total sums of squares is given by
SSTotal = Y>Y− β̂

>X>Y + β̂
>X>Y− nȲ 2 = Y>Y− nȲ 2
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Variances and Covariances

Recall, that if X is any random variable and a is any constant, then
Var(aX ) = a2Var(X ).

The matrix analog where X is any random vector and A is any compatible
matrix with fixed values is Var(AX) = AVar(X)A> = AΣXA>.

If Var(e) = Iσ2
Y |X , then Var(β̂) = σ̂2

Y |X (X>X)−1.

Var(β̂) represents the variance-covariance matrix (also sometimes called
the dispersion matrix). The main diagonal elements are the variances of the
regression coefficients, and the off-diagonal elements are the covariances.

Our definition for the MSE is the same as before, but can be solved in
terms of matrices where σ̂2

Y |X = SSE
n−p−1 = Y>Y−β̂

>X>Y
n−p−1 .
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Confidence and Prediction Intervals

For a given value of X = x0, we can also calculate the variance for the
fitted value for a confidence interval or a future predicted value for a
prediction interval. x0 can also be a vector of values.

The variance for a fitted value (i.e., the expected mean µ for a given value
of X = x0) is given by

Var(µY |x0) = x>0 [Var(β̂)]x0 = σ̂2
Y |X x>0 (X>X)−1x0

The variance of a future predicted value of Y for a given x0 for an
individual is given by:

Var(Ŷ |x0) = σ̂2
Y |X

[
1 + x>0 (X>X)−1x0

]
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Variance of β̂

Var(β̂) = Var [(X>X)−1X>Y ]
= Var [(X>X)−1X>(Xβ + ε)]
= Var [(X>X)−1X>(Xβ) + (X>X)−1X>(ε)]
= Var [(X>X)−1(X>X)β + (X>X)−1X>(ε)]
= Var [Iβ + (X>X)−1X>(ε)]
= Var [(X>X)−1X>(ε)]
= [(X>X)−1X>]Var(ε)[(X>X)−1X>]>

= Var(ε)[(X>X)−1X>][(X>X)−1X>]>

= Var(ε)[(X>X)−1X>][(X>)>((X>X)−1)>]
= Var(ε)(X>X)−1X>X(X>X)−1

= Var(ε)I(X>X)−1

= σ̂2
Y |X (X>X)−1
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Example

BIOS 6611 (CU Anschutz) Matrix Approach to Linear Regression Week 15 17 / 26



Example - Blood Pressure and Birthweight (Rosner)

Systolic blood pressure (mmHg), birthweight (oz), and age (days) were
measured for 16 infants. Our multiple linear regression model of
Y = Xβ + ε: 

89
90
83
77
92
98
82
85
96
95
80
79
86
97
92
88



=



1 135 3
1 120 4
1 100 3
1 105 2
1 130 4
1 125 5
1 125 2
1 105 3
1 120 5
1 90 4
1 120 2
1 95 3
1 120 3
1 150 4
1 160 3
1 125 3



β0
β1
β2

+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12
ε13
ε14
ε15
ε16
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Example - Blood Pressure and Birthweight (Rosner)

In subsequent lectures we will examine how to complete these calculations
more efficiently in R or SAS, but here we will just note the results of our
various quantities:

X>X =

 16 1925 53
1925 236875 6405
53 6405 189



X>Y =

 1409
170350
4750


Y>Y =

[
124751

]
(
X>X

)−1
=

3.3415265 −0.021734 −0.200517
−0.021734 0.0001918 −0.000406
−0.200517 −0.000406 0.0752777
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Example - Blood Pressure and Birthweight (Rosner)

The least squares solution for β̂ is

β̂ =

β̂0
β̂1
β̂2

 = (X>X)−1X>Y

=

3.3415265 −0.021734 −0.200517
−0.021734 0.0001918 −0.000406
−0.200517 −0.000406 0.0752777


 1409
170350
4750


=

53.4500.1256
5.8877
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Example - Blood Pressure and Birthweight (Rosner)

The variance-covariance matrix for β̂ is:

(X>X)−1σ̂2
Y |X =

3.3415265 −0.021734 −0.200517
−0.021734 0.0001918 −0.000406
−0.200517 −0.000406 0.0752777

 6.14630
=

20.53801 −0.13358 −1.23244
−0.13358 0.00118 −0.00250
−1.23244 −0.00250 0.46268


where σ̂2

Y |X = SSError
n−p−1 = Y>Y−β̂

>X>Y
n−p−1 = 6.14630
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Example - Blood Pressure and Birthweight (Rosner)

To calculate the t-statistic for a given β̂, say β̂1, we can create a vector to
“pick off” this coefficient and its variance from our matrices: c =

[
0 1 0

]
.

β̂1 = cβ̂ =
[
0 1 0

] 53.4500.1256
5.8877

 = 0.1256

Var(β̂1) =c(X>X)−1c>σ̂2
Y |X

=
[
0 1 0

] 3.3415265 −0.021734 −0.200517
−0.021734 0.0001918 −0.000406
−0.200517 −0.000406 0.0752777

01
0

× 6.14630

=
[
−0.021734 0.0001918 −0.000406

] 01
0

× 6.14630

= 0.0001918× 6.14630
= 0.001179
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Example - Blood Pressure and Birthweight (Rosner)

Thus, t = cβ̂√
c(X>X)−1c>σ̂2

X |Y

= β̂1√
Var(β̂1)

= 0.1256√
0.001179 = 3.657.

We know this is distributed as t16−2−1 = t13, so
2*pt(3.657,13,lower.tail=F)=0.0028983.
We can check all this by fitting the model using lm:
birth <- data.frame(

sbp = c(89,90,83,77,92,98,82,85,96,95,80,79,86,97,92,88),
wgt = c(135,120,100,105,130,125,125,105,120,90,120,95,120,150,160,125),
age = c(3,4,3,2,4,5,2,3,5,4,2,3,3,4,3,3)

)
summary(lm(sbp ~ wgt + age, data=birth))$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.4501940 4.5318886 11.794243 2.570807e-08
## wgt 0.1255833 0.0343362 3.657459 2.895789e-03
## age 5.8877191 0.6802051 8.655799 9.341884e-07
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Appendix - Code for Matrices in SAS and R
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Matrices in SAS

In SAS we can use PROC IML to complete matrix operations:
PROC IML;

A <- {3 4, 2 2};
B <- {1 3, 2 4};

QUIT;

Adding/Subtracting: A+B and A-B
Multiplying: A*B
Transposing: A`
Trace: TRACE(A)
Determinant: DET(A)
Inverse: INV(A) (note: GINV(A) will calculated the generalized
inverse)
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Matrices in R

In R we can use different operators and functions to complete matrix
operations:
A <- matrix( c(3,4,2,2), nrow=2, byrow=T)
B <- matrix( c(1,3,2,4), nrow=2, byrow=T)

Adding/Subtracting: A+B and A-B
Multiplying: A %*% B (note: A * B will do element-wise
multiplication)
Transposing: t(A)
Trace: psych::tr(A) or matrixcalc::matrix.trace(A)
Determinant: det(A)
Inverse: solve(A) (note: MASS::ginv(A) will calculate the
generalized inverse)
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