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Refresher: Two-Sample Bootstrap (Case Resampling)

Bootstrap sampling mimics how the data were obtained. For an experiment
designed to compare two populations, we randomly take a sample from
each. Hence, the bootstrap sample will mimic this process:

Given independent samples of sizes m and n from two populations,

© Draw a resample of size m with replacement from the first sample and
a separate resample of size n with replacement from the second
sample. Compute a statistic that compares the two groups, such as the
difference between the two sample means.

@ Repeat this resampling process many times, say 10,000.

© Construct the bootstrap distribution of the statistic. Inspect its spread,
bias, and shape.
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Bootstrap Review

With our case resampling bootstraps, we reviewed:

One- and two-sample problems

Calculating the standard error for a statistic
Calculating the bootstrap percentile confidence interval
Calculating the normal percentile confidence interval

However, there were potential limitations and the bootstrap world is much,
much larger. In this lecture we introduce some advanced topics.
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Alternative Confidence Interval Calculations
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Overview

The bootstrap percentile confidence interval is easy to implement (e.g. take
the /2 and 1 — a/2 percentiles of your bootstrap distribution), but may be
inaccurate (e.g., using the |bias|/SE < 0.1 rule of thumb).

The normal percentile confidence interval estimates the standard error from
our bootstrap distribution, but ultimately assumes normality and may be
inaccurate (e.g., coverage in each tail departing from the desired «/2 rate).

In contrast, there are various modifications to bootstrap confidence intervals
that have been proposed to further improve our estimation.
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Bias-Corrected (BC) Intervals

The general idea behind the BC interval is to adjust our bootstrap
percentile Cl to account for bias.

More technically, it is built on the idea that the estimator 6 may not be
median-unbiased (which is similar to the concept of mean-unbiasedness

A

where E(0) = 0 but for the median).

The deviations from median-unbiasedness can be estimated in our bootstrap
since we assume @ is the true value.!

Efron proposed a median-bias corrected interval that allows for a shift in the
distribution of g(6) by an unknown amount zy, which in our bootstrap
setting is:

P*{g(6") — g(0) + 20 < x} ~ (x)

'Boos, D. D., & Stefanski, L. A. (2013). Essential statistical inference: theory and
methods, Ch. 11.6. New York: Springer.
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Bias-Corrected Accelerated (BC,) Intervals

A second improvement proposed by Efron is the BC, interval. It attempts
to account for underlying higher order effects so that it corrects our
bootstrap percentile Cl for both bias and skew.

It adds an “acceleration” constant a that is related to the 3rd moment
skewness coefficient:

[ &(6") —g(9) ~
P {]_—|—ag(é)+zo <X} N(D(X)
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Studentized t-Intervals

The studentized t (or bootstrap t) interval is another alternative approach
to estimating confidence intervals. It estimates quantiles from the bootstrap
distribution of the Student’s t-test:

(é — t(*l_a/z)s'ég,é — t(*a/z)SAEQ)

0 is the estimate from our sample, t(*l—a/Z) is the 1 — /2 percentile based

on the bootstrap Student’s t-test (i.e., t* = (6* — 9A)/sAe9A*), Seg is the SE
from the sample, and sg, is the SE from the bootstrap iteration.

The resulting intervals do not have to be symmetric since

t(*l—a/z) #* —t(*a/2), which is an improvement over the normal percentile Cl.
However, it can be influenced by outliers, in which case the percentile
intervals may be more appropriate.
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Bootstrap Cl Example in R

From the TSHS? Blood Storage dataset, we will explore if there is a mean
difference in preoperative prostate specific antigen (PSA; ng/mL) between
tumor stages (T1-T2a [X, m=267] versus T2b-T3 [Y, n=34]):

o 7] Group: Mean (SD)
= — T1-T2a: 7.7 (4.9)
g _ -  T2b-T3:12.8 (10.9)

C <
85
o RN -
o =
o [ [ [ [ [ [
0 10 20 30 40 50

Prostate Specific Antigen (ng/mL)

2https: //www.causeweb.org /tshs/category /dataset/
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Bootstrap Cl Example in R

library(boot)

set.seed(6618)

mean_diff <- function(dat, index){
ml = mean(subset(dat[index, 1], dat[index, 2] == 1)) #T1-T2a
m2 = mean(subset(dat[index, 1], dat[index, 2] == 2)) #T2b-T3
return(ml - m2)}

boot_res <- boot(data = dat[,c('PreopPSA','T.Stage')],

statistic = mean_diff, R=10000)
boot.ci( boot_res )

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates

#i#t

## CALL :

## boot.ci(boot.out = boot_res)

#i#t

## Intervals :

## Level Normal Basic

## 957,  (-8.885, -1.397 ) (-8.712, -1.258 )
#i#

## Level Percentile BCa

## 957  (-9.015, -1.561 ) (-9.566, -1.895 )
## Calculations and Intervals on Original Scale
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Other Types of Bootstraps
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Overview

We have focused on the nonparametric case-resampling bootstrap approach,
which is fairly straightforward and works for many problems.

However, there are many other approaches to bootstrapping. In this section

we briefly touch on some you may encounter and general details on the
motivation and approach.
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Parametric Bootstrap

A parametric bootstrap assumes our data comes from a known distribution
with unknown parameters. One can estimate the unknown parameters from
the available data, then use simulation to generate new samples.

This approach works well if we have a strong reason to believe the data
follows a particular distribution, resulting in more accurate estimates of the
standard error and Cl. This is especially true for smaller sample sizes.

However, if our assumed distribution is wrong it may lead to less accurate
estimates.

BIOS 6618 (CU Anschutz) Survey of Advanced Bootstrap Topics 15/20



Parametric Bootstrap

The general steps of a parametric bootstrap are as follows:

© Assume our data Xi, ..., X), are drawn from a parametric distribution
F(0)

@ Estimate 6 by a statistic § (e.g.,  from X)

© Generate B bootstrap samples by simulating from F(é) (e.g., simulate
m cases from N(X,s%))

Q Calculate 0* for each bootstrap sample

We can then use the B estimates of 8* to estimate the SE or Cl, just like
the nonparametric bootstrap.
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Smoothed Bootstrap

Nonparametric bootstraps do not work as well for rank-based estimators,
such as the median.

One potential solution is to add a small amount of zero-centered random
noise to each resampling observation in each of the B bootstrap samples.

Commonly used distributions are Uniform(—d, d) or N(0,d), where § may
depend on the context. Too small and not enough smoothing occurs, but
too large and it obscures the original information.

The results can be summarized to estimate the SE or Cl, just like the
nonparametric bootstrap.
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Residual Bootstraps

In linear regression, we may wish to treat our X's as “fixed” rather than
random (as is assumed with case resampling) based on our study design.

One easy way to address this is to resample based on residuals using the
following steps:

© Fit the model and keep \A/, and & = Y; — \A’,

@ For each observation set (Y;, Xj1,---, Xim), add a randomly resampled
with replacement residual to the fitted value: Y/ = V; + & .

© Refit your regression model with outcomes of Y;* and save the
statistic(s) of interest.

QO Repeat B times.

The results can be summarized to estimate the SE or Cl, just like the
nonparametric bootstrap.
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Wild Bootstraps

Related to the residual bootstrap approach, but the wild bootstrap relaxes
the assumption of homoscedasticity by multiplying the randomly sampled
residuals by another random variable, v; with mean 0 and variance 1:

O Fit the model and keep Y; and & = Y, — V.

@ For each observation set (Yi, Xi1,- -+, Xim), add a randomly resampled
with replacement residual to the fitted value: Y/ = \A/, + v,-éf.

© Refit your regression model with outcomes of Y;* and save the
statistic(s) of interest.

© Repeat B times.

Common choices of v; include N(0,1) or Mammen's two-point distribution
which is —(v/5 — 1)/2 with probability (v/5 +1)/(2v/5) and (/5 +1)/2
with probability (v/5 — 1)/(2V/5).

The results can be summarized to estimate the SE or Cl, just like the
nonparametric bootstrap.
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Advanced Bootstrap Summary

In this lecture we examined alternative approaches to calculating confidence
intervals adjusting for bias (BC) or bias and skewness (BC,).

We also briefly reviewed some alternative bootstrap strategies that may be
used in certain contexts.

There are many more bootstrap approaches and confidence interval
strategies that may be helpful in different settings, so keep your eyes out for
others.
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