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Bootstrap Review
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Refresher: Two-Sample Bootstrap (Case Resampling)

Bootstrap sampling mimics how the data were obtained. For an experiment
designed to compare two populations, we randomly take a sample from
each. Hence, the bootstrap sample will mimic this process:

Given independent samples of sizes m and n from two populations,
1 Draw a resample of size m with replacement from the first sample and

a separate resample of size n with replacement from the second
sample. Compute a statistic that compares the two groups, such as the
difference between the two sample means.

2 Repeat this resampling process many times, say 10,000.
3 Construct the bootstrap distribution of the statistic. Inspect its spread,

bias, and shape.

BIOS 6618 (CU Anschutz) Bootstrap p-values 4 / 23



What Bootstraps Can Do

In our past lectures we discussed how bootstraps can be used to:
1 Estimate the standard errors for our estimators
2 Construct confidence intervals (e.g., bootstrap percentile or normal

percentile) for unknown parameters

Another potential use of bootstraps is to:
3 Calculate p-values for test statistics under a null hypothesis (i.e., a new

assumption we didn’t need to make for 1/2 above)
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Resampling Under the Null Hypothesis

In order to estimate a p-value (i.e., the probability of observing something
as or more extreme than what we observe assuming the null hypothesis is
true), we need to resample under a null distribution.

Producing a null distribution with bootstrap testing can be somewhat
nuanced and depends on the test statistic of interest. This will be discussed
in terms of comparing two group means in the next section.
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Comparison with Permutation Testing

If you have a slight case of déjà vu with regards to “resampling” and “null
distribution”, you may be thinking about a permutation test.

Permutation tests sample without replacement from the pooled dataset
(e.g., combining all Xm and Yn) and randomly assigning labels for belonging
to X or Y and this process always generates the null distribution.

However, permutation tests are limited to contexts where groups under H0
have the same distribution (i.e., are exchangeable). This may be true in
randomized studies, but may require stronger assumptions in other settings.
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Bootstrap p-value Approaches
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Motivating Context

As a motivating context of introducing p-value definitions for bootstraps,
assume our test statistic is the difference in group means such that
T = µX − µY .

Suppose that T0 = X̄ − Ȳ is the value of a test statistic T computed for a
particular sample. Then let T ∗

1 , · · · , T ∗
B represent estimates from B

bootstrap resamples from the null distribution.
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Estimating One-Tailed Bootstrap p-value

If H0 : µX − µY ≤ 0 and H1 : µX − µY > 0 (i.e., large values of T support
the alternative), then our one-sided p-value is:

P(T ≥ T0|H0) = pB = {# of T ∗
i ≥ T0}

B

Equivalently, if H0 : µX − µY ≥ 0 and H1 : µX − µY < 0, then our
one-sided p-value is:

P(T ≤ T0|H0) = pB = {# of T ∗
i ≤ T0}

B

Note, some add 1 to the numerator and denominator to avoid the possibility
of having a p-value of 0.
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Estimating Two-Tailed Bootstrap p-value

Assume T0 > 0, then we can calculate the probability of observing
something as or more extreme in each tail as P(T ≥ T0|H0) (i.e., what we
observed) and P(T ≤ −T0|H0) (i.e., as or more extreme in the other tail).

For two-sided p-values, multiple strategies exist in our bootstrap distribution
(in order from most to least conservative):

1 Multiply max by 2: pB = 2 × max[P(T ≥ T0|H0), P(T ≤ −T0|H0)]
2 Add the two tails together: pB = P(T ≥ T0|H0) + P(T ≤ −T0|H0)
3 Multiply min by 2: pB = 2 × min[P(T ≥ T0|H0), P(T ≤ −T0|H0)]

Another strategy based on a one-sided p-value would be:
4 Multiply the min one-sided p-value by 2:

pB = 2 × min[P(T ≥ T0|H0), P(T < T0|H0)]

Options 1/3/4 assume symmetry of our distribution (i.e., the probability
should be the same in the upper and lower tail), whereas option 2 provides
the most flexibility.
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99 Rule (How Many Bootstraps)

When determining the number of bootstrap resamples, B, to use for
estimating a p-value, Boos & Stefanski1 recommend following the “99 Rule”
of resampling B = 19, B = 99, B = 999, etc. Why 99?

Under H0, we know p-values are uniformly distributed. Therefore, we have
B + 1 possibilities (e.g., anywhere from 0 to all B resamples meet our
criteria to be counted). If we have 99 or 100 B, then 1

B+1 :
## 0 1 2 3 4 5 6
## B=99 0 0.01010101 0.02020202 0.03030303 0.04040404 0.05050505 0.06060606
## B=100 0 0.01000000 0.02000000 0.03000000 0.04000000 0.05000000 0.06000000

For B = 99, we see that P(pB ≤ 0.05) = 5
100 = 0.05, but for B = 100 we

have P(pB ≤ 0.05) = 6
101 = 0.059.

So, to maintain α, especially with small B, we should follow the 99 rule.

1Boos, D. D., & Stefanski, L. A. (2013). Essential statistical inference: theory and
methods, Ch. 11. New York: Springer.
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Bootstrap p-value Example
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Example Introduction

From the TSHS2 Blood Storage dataset, we will explore if there is a mean
difference in preoperative prostate specific antigen (PSA; ng/mL) between
tumor stages (T1-T2a [X , m=267] versus T2b-T3 [Y , n=34]):
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T2b−T3: 12.8 (10.9)

2https://www.causeweb.org/tshs/category/dataset/
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Test Statistics Evaluated

We will consider three different test statistics to estimate through our
bootstraps:

1 d = X̄ − Ȳ
▶ Most similar to what we may sample for bootstraps to estimate SE or CI
▶ Doesn’t account for potential differences in SEs between groups
▶ Doesn’t align with test statistics we typically think of with calculating

p-values
2 tp = X̄−Ȳ√

s2
p ( 1

m + 1
n )

where s2
p = (m−1)s2

X +(n−1)s2
Y

m+n−2
▶ Reflects a two-sample t-test assuming equal variance
▶ Doesn’t account for potential differences in SEs between groups

3 tw = X̄−Ȳ√
s2
X
m +

s2
Y
n

▶ Reflects a two-sample t-test allowing unequal variances
▶ Most flexible while accounting for SEs
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Null Distribution Approaches

We will explore two approaches for bootstrapping a null distribution
proposed by Boos and Stefanski3:

1 Resampling with replacement m cases for X and n cases for Y from a
pooled set of X1, · · · , Xm, Y1, · · · , Yn.

▶ Creates a common overall mean but assumes identical variance.
▶ Can test H0 : F (t) = G(t), where F and G are the distribution

functions of X and Y , respectively.
2 Resampling with replacement m cases for X from X1 − X̄ , · · · , Xm − X̄

and n cases for Y from Y1 − Ȳ , · · · , Yn − Ȳ .
▶ Centers each group at mean 0, but allows different variances.
▶ Can test H0 : µX = µY (i.e., more general).

In general, for each statistic, the appropriate null distribution may vary and
will need to be thoughtfully considered.

3Boos, D. D., & Stefanski, L. A. (2013). Essential statistical inference: theory and
methods, Ch. 11.6. New York: Springer.
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Two-Sided Test Bootstrap Code in R - I

Using B = 999 (i.e., 99 Rule):
set.seed(6618) # set seed for reproducibility
B <- 9999 # set number of bootstraps

# create objects with relevant data
X <- dat$PreopPSA[ which(dat$T.Stage==1) ]
m <- length(X)
Y <- dat$PreopPSA[ which(dat$T.Stage==2) ]
n <- length(Y)

# calculate observed test statistics
T_0_d <- mean(X) - mean(Y) # difference
T_0_tp <- t.test(X, Y, var.equal=T)$statistic # t_p
T_0_tw <- t.test(X, Y, var.equal=F)$statistic # t_w
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Two-Sided Test Bootstrap Code in R - II

The following code implements strategy 1 using the pooled null:
## resampling strategy 1: null from pooled data
pool <- c(X,Y) # create pooled object
diff_pool_d <- diff_pool_tp <- diff_pool_tw <- rep(NA,B)

for (i in 1:B){
X_boot <- sample(pool, size=m, replace=T)
Y_boot <- sample(pool, size=n, replace=T)

# calculate & save test statistics
diff_pool_d[i] <- mean(X_boot)-mean(Y_boot)
diff_pool_tp[i] <- t.test(X_boot,Y_boot,var.equal=T)$statistic
diff_pool_tw[i] <- t.test(X_boot,Y_boot,var.equal=F)$statistic

}
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Two-Sided Test Bootstrap Code in R - III

The following code implements strategy 2 using the centered groups:
## resampling strategy 2: null from centered groups
X_center <- X - mean(X) # center X for mean 0
Y_center <- Y - mean(Y) # center Y for mean 0
diff_center_d <- diff_center_tp <- diff_center_tw <- rep(NA,B)

for (i in 1:B){
X_boot <- sample(X_center, size=m, replace=T)
Y_boot <- sample(Y_center, size=n, replace=T)

# calculate & save test statistics
diff_center_d[i] <- mean(X_boot)-mean(Y_boot)
diff_center_tp[i] <- t.test(X_boot,Y_boot,var.equal=T)$statistic
diff_center_tw[i] <- t.test(X_boot,Y_boot,var.equal=F)$statistic

}
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Two-Sided Test Bootstrap Code in R - IV

The following code provides examples for each of the 4 p-value estimation
strategies assuming the pooled data null (resampling strategy 1) for the tw
test statistic with observed value in our sample of T0,tw =-2.7:
# calculate lower and upper tail pooled
pr_pool_tw_low <- mean(diff_pool_tw <= T_0_tw)
pr_pool_tw_up <- mean(diff_pool_tw >= -T_0_tw)
c(pr_pool_tw_low, pr_pool_tw_up) # print results

## [1] 0.00040004 0.03350335
# p-value estimates
p_s1_pool_tw <- 2*max(pr_pool_tw_low, pr_pool_tw_up) #strategy 1
p_s2_pool_tw <- pr_pool_tw_low + pr_pool_tw_up #strategy 2
p_s3_pool_tw <- 2*min(pr_pool_tw_low, pr_pool_tw_up) #strategy 3
p_s4_pool_tw <- 2*min(pr_pool_tw_low, 1-pr_pool_tw_low) #strategy 4

c(p_s1_pool_tw, p_s2_pool_tw, p_s3_pool_tw, p_s4_pool_tw)

## [1] 0.06700670 0.03390339 0.00080008 0.00080008
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Two-Sided Test Bootstrap in R - Results

The following table summarizes the overall results for each statistic and
sampling strategy. For comparison, the two-sample t-test p-value assuming
equal variances is <0.001 and assuming unequal variance is 0.011.

Pooled Null Centered Null
p-value Approach d tp tw d tp tw
1 (2 x max): 0 0 0.067 0.01 0.009 0.037
2 (add tails): 0 0 0.034 0.006 0.008 0.021
3 (2 x min): 0 0 0.001 0.002 0.008 0.004
4 (2 x one-sided): 0 0 0.001 0.01 0.009 0.004
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Two-Sided Test Bootstrap in R - Results
Pooled Null Centered Null

p-value Approach d tp tw d tp tw
1 (2 x max): 0 0 0.067 0.01 0.009 0.037
2 (add tails): 0 0 0.034 0.006 0.008 0.021
3 (2 x min): 0 0 0.001 0.002 0.008 0.004
4 (2 x one-sided): 0 0 0.001 0.01 0.009 0.004

In general, results are all <0.05, except for p-value approach 1 for tw
under the pooled null.
The unequal variance t-test may not be conservative enough (p=0.011)
compared to bootstrap p-values from approaches 1 and 2.
Given the data did not appear to have equal variance in each tumor
stage group, the centered null approach may be more appropriate.
Similarly, it may make more sense to evaluate d or tw to avoid making
assumptions about equal variances in our test statistic.
Finally, we may wish to use approach 1 to be most conservative or
approach 2 to avoid assuming symmetry in the tails.
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Bootstrap p-value Summary

This lecture expanded our use of the bootstrap from estimating the
sampling distribution of a test statistic to calculate the SE or CI, to
calculating p-values from a bootstrapped null distribution.

As we saw in the lecture, there are many nuanced decisions to consider with
selecting an appropriate null distribution, how to calculate the p-value, and
what statistic to use. While there is no one “correct” answer, it may be
better to select more conservative p-value calculations to avoid type I errors
(i.e., false positives).

These approaches are general and can be used to estimate p-values for
other bootstrapping approaches. Additionally, we can always interpret the
bootstrap CI to evaluate if our null hypothesis value falls within the interval
to make a decision.

BIOS 6618 (CU Anschutz) Bootstrap p-values 23 / 23


	Bootstrap Review
	Bootstrap p-value Approaches
	Bootstrap p-value Example

