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Introduction
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Frequentist versus Bayesian

Almost all the methods covered this semester are rooted in the frequentist
approach to statistics. This is based on long-run probabilities of how
probable a dataset is given a null hypothesis (for a refresher review the
lectures on p-values and the NHST framework).

An alternative approach is known as Bayesian statistics, which focuses on
the probability of a hypothesis given a certain dataset. Bayesian approaches
are able to incorporate prior information to our analyses, make different
assumptions about our modeling framework, and have different
interpretations.

This lecture will give a brief, high-level introduction to Bayesian methods.
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Bayesian Overview

Let x be our observed data and θ be the parameter(s) we are interested in
estimating (e.g., the sample mean (X̄ ), coefficients in a regression model
(β), etc.).

According to Bayes’ theorem we have:

p(θ|x) = p(x|θ)p(θ)
p(x)

p(θ|x) is the posterior

p(x|θ) is the likelihood

p(θ) is the prior

p(x) is the normalizing constant
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Likelihood: p(x|θ)

The likelihood is the joint density function of our observed data to be
analyzed:

L(θ) = L(θ|x) = p(x|θ)

In our likelihood function, we assume our data is fixed and consider θ over
the whole range of possible parameter values.

For our class, we only assume cases with independent and identically
distributed (iid) data, where we have a product of the PDFs at each
observation xi . For a linear regression this is:

p(x|θ) =
n∏

i=1
f (xi ; θ) =

n∏
i=1

N(β0 + β1X1i + · · · + βkXki , σ2
Y |X )

Note, we use the likelihood in both frequentist and Bayesian statistics.
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Prior: p(θ)

The prior is our assumed distribution on parameters which quantifies a
“belief” in the values of the parameters prior to observing study data. Priors
are a unique aspect of Bayesian analyses.

The specification of priors in Bayesian models is one of the challenges since
we often may be concerned about placing priors that may be seen as overly
informative (e.g., overpowering the likelihood even if the data does not
agree with our prior).

While any distribution may be specified, a common option in linear
regression for our beta coefficients is βk ∼ N(a, b) (where a and b are
selected based on context).

In practice, it is recommended to evaluate the results across a range of
priors to see if the posterior changes with different specifications.
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Normalizing Constant: p(x)

The normalizing constant is estimated by integrating out the parameter(s):

p(x) =
∫

p(x|θ)p(θ)dθ

Its role in Bayes’ theorem is to ensure any probability function reduces to a
probability density function with a total probability of 1.
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Posterior: p(θ|x)

The posterior is what we ultimately are interested in using for statistical
inference.

It expresses the uncertainty in the parameter(s) after accounting for both
our observed data and incorporating our priors.

In some simpler contexts there are conjugate priors that result in closed
form posterior distributions (e.g., a binomial likelihood with a beta prior on
p; a normal likelihood with known variance and a normal prior on µ).

For most contexts, we likely need to use numerical integration to
approximate the posterior distribution. This is achieved through Markov
chain Monte Carlo (MCMC) methods.
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Bayesian Posterior and Proportional To

According to Bayes’ theorem we have:

p(θ|x) = p(x|θ)p(θ)
p(x) ∝ p(x|θ)p(θ)

p(θ|x) is the posterior

p(x|θ) is the likelihood

p(θ) is the prior

p(x) is the normalizing constant, but this is usually ignored as we
describe the relationship of the posterior being proportional to (∝)
the likelihood × prior
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Bayes Example Figure of Prior, Likelihood, Posterior

Source: https://hudsonthames.org/wp-content/uploads/2020/10/bayesian.png
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MCMC and Diagnostics
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MCMC

As mentioned previously, the posterior is often not known or available in
closed form.

Instead, we can use Markov chain Monte Carlo (MCMC) methods to
simulate samples from the posterior distribution.

There are numerous different MCMC algorithms that have been proposed
included:

Gibbs Sampler
Metropolis Hasting
No-U-Turn Sampler (NUTS)
Reversible-Jump
See over 40 different MCMC samplers at
https://m-clark.github.io/docs/ld_mcmc/index_onepage.html

In general, our MCMC samplers can be thought of as recipes to explore the
sample space as we approximate our posterior distribution.

BIOS 6618 (CU Anschutz) Intro to Bayesian Methods 13 / 30

https://m-clark.github.io/docs/ld_mcmc/index_onepage.html


MCMC in R/SAS/Stata

While we can often custom code our own MCMC in R, we can also leverage
existing software to implement our models.

Two older Bayesian languages with R interfaces are BUGS (e.g.,
R2OpenBUGS) and JAGS (e.g., rjags) are based on Gibbs samplers.
However, these often involve creating your own models and syntax.

A newer approach based on a Hamiltonian Markov Chain is the Stan
language. There are two popular sets of packages (rstan/rstanarm and
brms) that both help to implement Stan models using standard glm syntax.
You can also directly use Stan syntax to define your models.

It is worth noting SAS (e.g., PROC MCMC) and Stata have their own
implementations.
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MCMC Output and Terminology

Output from our MCMC algorithms will usually be in the form of a
rectangular dataset with a column for each chain and a row for each
iteration.

Chains are separate instances of the MCMC algorithm, often with different
initial values, that help to provide more exploration of the sample space.

Each chain has a burn-in period where the first Nburn-in of each chain are
discarded to provide time for convergence.

Each software/package will have its own defaults for number of chains,
iterations, and burn-in period.
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MCMC Diagnostics

Since the MCMC is an approximation to estimate the posterior distribution,
we will want to evaluate how well we think our model/sampler has done and
if changes may be needed (e.g., longer burn-in, different models, etc.).

While there are many proposed approaches, we will focus on:

Trace plots

Autocorrelation plots

Density plots

Numerical diagnostics
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Trace Plots

Plots posterior estimates for each iteration across chain(s)

Value of the parameter on the y-axis

If convergence is achieved, should look like random noise

Example from SAS’s PROC MCMC with burn-in of 1000 iterations
already removed for intercept in regression model (good convergence
on left, poor convergence on right):
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Autocorrelation Plots

Pairwise correlation between
iterations and different lags
between iterations
Well-functioning algorithms
should have a fairly steep decline
as lag increases
This pattern suggests samples
are likely to be random draws
from posterior and simulation
has adequately sampled the
support of the parameter
PROC MCMC example
comparing better (top) and
worse (bottom) autocorrelation:
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Density/Histogram Plots

Visualization of the posterior
distribution as a histogram
and/or density plot
Typically looking for a fairly
smooth shape with a single mode
Bimodal or unusual patterns may
indicate lack of convergence
PROC MCMC example
comparing better (top) and
worse (bottom) convergence:
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Numerical Diagnostics

In addition to plots to visualize convergence, other approaches exist to
numerically summarize performance (and may differ by software).

Geweke Diagnostic:

Compares values in early part of Markov chain to latter values

Provides a two-sided test with a large absolute z-score indicating
rejection of convergence

R-hat:

A potential scale reduction factor proposed by Gelman and Rubin
Estimates convergence based on variance of estimated parameter
between chains and variance within chain
Want values near 1 (some rules of thumb suggest <1.01 or <1.05 as
adequate)
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Bayesian Summaries from the Posterior
Distribution
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Point Estimate

Since our posterior distribution isn’t a single value, but a distribution with
varying densities over a range of possible parameter values, we have to
decide how to summarize the point estimate.

In practice, we often use one of the measures of central tendency:

Mean of the posterior distribution (may be affected by outliers/skewed
posteriors)
Median of the posterior distribution
Mode of the posterior distribution (may not make sense of continuous
outcomes)

These can all be estimated either from the conjugate distribution (i.e., we
know the distribution and can estimate the value from it) or from pooling
together all MCMC posterior chains after discarding the burn-in periods.
The choice may also depend on the shape of the posterior distribution.

Defaults differ by software, so one should check what summary is used.
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Posterior Probability

From our posterior distribution, we can estimate the posterior probability of
any given hypothesis of interest. This may be calculated directly from a
conjugate distribution (e.g., beta-binomial) or approximated from the
MCMC posterior.

This is often thought of as analogous to the frequentist p-value. However,
where the p-value has a very nuanced interpretation (i.e., the probability of
observing something as or more extreme under the null hypothesis), the
posterior probability has a very straight-forward interpretation (i.e., the
probability of our hypothesis).

For example, if the posterior probability of the mean being greater than 0 is
P(µ > 0) = 0.89, we would say the probability the mean is greater than 0 is
89%.
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Credible Intervals

From our posterior distribution, we can also estimate the credible interval
(CrI) around our parameter(s) of interest.

This is often thought of as analogous to the frequentist confidence interval
(CI). However, where the CI has a nuanced interpretation (i.e., we are 95%
confident. . . ), the CrI has a very straight-forward interpretation (i.e., there
is a 95% probability that θ falls in our interval).

Unlike CIs, CrIs are not unique on a posterior distribution and different
assumptions exist for how to calculate the interval (similar to some choices
for bootstrap CIs):

Highest posterior density (HPD): identifying the narrowest possible
interval (always includes the mode)
Equal-tailed: choosing the interval where the probability of being
below and above the interval is equal (always includes the median)
Mean centered: choosing the interval so it is centered at the mean

BIOS 6618 (CU Anschutz) Intro to Bayesian Methods 24 / 30



Prior Specification
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Motivation

In this final section we will compare some different priors on a simulated
data set estimating the posterior mean for a one-sample data set using
brms in R. We will walk through an example with interpreting output and
diagnostics in a separate lecture.

Let’s simulate a sample of n = 20 observations from a normal distribution
with a mean (SD) of 10 (2.5):
library(brms)

# simulate data
set.seed(6618)
dat <- data.frame(y = rnorm(n=20, mean=10, sd=2.5))
mean(dat$y); sd(dat$y)

## [1] 8.632887

## [1] 3.090654
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Comparing Priors

Priors are often given descriptors like vague, noninformative, informative,
etc. These are not well-defined and can depend on the eye of the beholder.

For our problem, we will implement a linear regression model with only an
intercept considering:

1 β0 ∼ N(0, 1000) (potentially the most “vague”)
2 β0 ∼ N(0, 1) (potentially informative due to σ = 1)
3 β0 ∼ N(10, 1000) (center at simulated mean)
4 β0 ∼ N(10, 1) (center at simulated mean, smaller SD)
5 β0 ∼ U(−50, 50) (uniform)
6 β0 ∼ U(−5, 5) (uniform, narrow range)
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Basics in brms

We will fit the models in brms and then plot the results:
# Model with N(0,1000) prior
mod1 <- brm( y ~ 1, data=dat,

prior = c(set_prior("normal(0,1000)",
class="Intercept")),

seed = 123
)

# Model with U(-50,50) prior
mod5 <- brm( y ~ 1, data=dat,

prior = c(set_prior("uniform(-50,50)",
lb=-50, ub=50,
class="Intercept")),

seed = 123
)
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Plots of Likelihood, Prior, Posterior
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Summary

Bayesian methods have a different approach to inference than frequentist
methods.

The choice of prior specification may be challenging but gives great
flexibility to incorporate prior beliefs or information.

Bayesian quantities (e.g., posterior probability, credible intervals) have
intuitive estimates in comparison to frequentist quantities (e.g., p-values,
confidence intervals).

We will explore the use of Bayesian methods in a multiple linear regression
analysis in another lecture.
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