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Motivating Data and Frequentist MLR
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Motivating Example: Lung Function in Children

Study Objective: To describe how lung function develops in children, and
how smoking affects development.

Study Design: Cross-sectional survey. A random sample of children ages 3
to 19 from the East Boston area from which 654 had usable data.

Variables Measured: FEV (forced expiratory volume), age, sex, height,
current smoking status. (FEV) measures how much air a person can exhale
during a forced breath. Higher FEV indicates better lung function.

Outcome Variable (Y): FEV

Primary Explanatory Variable (X): age, sex, height, smoking status
(depending on the question of interest)

Covariates (C): age, sex, height, smoking status (depending on the question
of interest)

Source: Lung function in children (FEV data) [Am J Epidemiology, 110(1): 15-26, 1980.]
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Motivating Example Figure
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Frequentist MLR

We previously fit a MLR with an outcome of FEV and predictors of age and
smoking status, which we will use for comparison to our Bayesian models:

fev <- read.csv('FEV_rosner.csv')
mlr <- 1m( fev ~ smoke + age, data=fev )

summary (mlr) $coefficients

## Estimate
## (Intercept) 0.3673730
## smokesmoker -0.2089949
## age 0.2306046

confint (mlr)

## 2.5 %
## (Intercept) 0.2074647
## smokesmoker -0.3675476
## age 0.2145336
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Std. Error t value
0.081435716 4.511203
0.080745337 -2.588321
0.008184372 28.176209

97.5 %
0.52728140
-0.05044215
0.24667553

Bayesian Linear Regression

Pr(>ltl)
7.647680e-06
9.859773e-03

8.279537e-115
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Bayesian Approaches

We will explore three different sets of priors to fit our MLR and walk

through how we can use the brms package in R to estimate each Bayesian
model. The three sets of priors will include:

© “Non-informative” priors on our beta coefficients of
Bagea Bsmoke ~ N(07 1000)

@ “Informative” priors on our beta coefficients for smoking and age of
Bage ~ N(0.2,0.1) and Ssmoke ~ N(—0.33,0.5)

© Poorly specified priors to illustrate why we still need to be thoughtful
about our approach of ,ge ~ N(25,0.1) and Ssmoke ~ N(—25,0.1)
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“Non-Informative” Prior Bayesian MLR
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Model Fit with brms

For our lecture we will use the brms package in R to fit and evaluate our
Bayesian models. We will first start with our “noninformative” priors of

Bages Bsmoke ~ N(0,1000) and assume default priors for everything else
(e.g., the intercept, sigma):
library(brms) # load package

modl <- brm( fev ~ smoke + age, data=fev,

prior = c(
set_prior("normal(0,1000)", class="b", coef="age"),
set_prior("normal(0,1000)", class="b", coef="smokesmoker")),

seed = 123, # set seed for reproducibility

chains = 4, # number of chains

warmup = 1000, # burn-in length to discard from iter

iter = 2000) # total number of iterations
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Non-Informative Prior Model Summary

summary (mod1)

## Family: gaussian

## Links: mu = identity; sigma = identity

## Formula: fev ~ smoke + age

## Data: fev (Number of observations: 654)

## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

## total post-warmup draws = 4000

##

## Population-Level Effects:

## Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.37 0.08 0.21 0.53 1.00 3911 2976
## smokesmoker -0.21 0.08 -0.38 -0.05 1.00 3454 2745
## age 0.23 0.01 0.21 0.25 1.00 3719 2873
##

## Family Specific Parameters:

## Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

## sigma 0.57 0.02 0.54 0.60 1.00 3878 2844

##

## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

##
##

and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

@ Estimate is mean from pooled chains

) 3 have same interpretation as frequentist MLR

@ 1-95% CI and u-95% CI is our equal-tailed credible interval

@ R-hat values of 1.00 suggest good convergence (rule of thumb is <1.05)
@ sigma is our estimated vV MSE = Gy x
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Check Priors Used

We can also easily check the priors we set (or the defaults used) using

prior_summary():

priors <- prior_summary(modl)
priors[,c(1:3,10)1 # removed columns not needed for ezample

##
##
##
##
##
##

prior
(flat)
normal (0,1000)
normal (0,1000)

class coef
b
b age

b smokesmoker

student_t(3, 2.5, 2.5) Intercept

student_t(3, 0, 2.5)
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sigma
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Diagnostic Plots: Density and Trace

plot (mod1)
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Diagnostic Plots: Autocorrelation

mcmc_plot(modl, type="acf")
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HPD Intervals

While brms reports the 95% equal-tailed credible interval by default, we can
also use other functions to estimate the highest posterior density (HPD)
interval (i.e., the narrowest interval that includes 95% of the posterior):
bayestestR: :hdi(modl, ci=0.95)

## Highest Density Interval

##

## Parameter | 95% HDI
##H -
## (Intercept) | [ 0.2

## smokesmoker | [-0.37, -0.04]
## age | [ 0.2

Given our fairly symmetric trace plots, the equal-tailed Crl are similar:

@ (Intercept): (0.21, 0.53)
@ smokesmoker: (-0.38, -0.05)
e age: (0.21, 0.25)
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Extracting Posterior Chains

We can also extract all the posterior chain iterations:

postl <- as_draws_df (modl) # eztract as data frame
nrow(postl) # check total number of iterations from pooled chains

## [1] 4000
postil[c(1:4, 3997:4000),]

## # A draws_df: 8 iterations, 2 chains, and 6 variables
##  b_Intercept b_smokesmoker b_age sigma lprior lp__

## 1 0.27 -0.283 0.24 0.58 -19 -574
## 2 0.50 -0.070 0.21 0.55 -19 -576
#i# 3 0.22 -0.327 0.24 0.57 -19 -575
## 4 0.30 -0.075 0.23 0.57 -19 -578
## 5 0.38 -0.325 0.23 0.59 -19 -576
#i#t 6 0.29 -0.182 0.24 0.55 -19 -574
## 7 0.27 -0.269 0.24 0.58 -19 -574
## 8 0.30 -0.313 0.24 0.57 -19 -574
#it # . hidden reserved variables {'.chain', '.iteration',6 '.draw'}
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Estimate Posterior Probabilities

Once we've extracted our posterior iterations, it is really easy to estimate
any posterior probabilities (PP) we are interested in. For example, let's test
the hypothesis P(Bsmoke > 0)' P(ﬁsmoke < 0). and P(ﬁsmoke < _0‘1):
mean( post1$b_smokesmoker > O ) # P(smoke > 0)

## [1] 0.00475
mean( post1$b_smokesmoker < 0 ) # P(smoke < 0)

## [1] 0.99525
mean( post1$b_smokesmoker < -0.1 ) # P(smoke < -0.1)

## [1] 0.90425
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Estimate Posterior Probabilities

We can also easily calculate the probability that a 15-year old smoker has an
average FEV less than 3.82! by estimating the FEV at each iteration (e.g.,
as if we have a regression equation):

mean( (posti1$b_Intercept + postl$b_smokesmoker + 15*postli$b_age) < 3.82)

## [1] 0.999

This is the estimated mean FEV for a 15-year old non-smoker from our frequentist
MLR to use as an example.
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Summarize Different Point Estimates

With our posterior iterations, we can also summarize the median instead of
the mean:

apply(postl, 2, FUN=median) [1:4] # median

##  Db_Intercept b_smokesmoker b_age sigma
## 0.3690756 -0.2080753 0.2304503 0.5656746

apply(postl, 2, FUN=mean) [1:4] # mean (Estimate in brms output)

##  b_Intercept b_smokesmoker b_age sigma
## 0.3676358 -0.2091936 0.2305654 0.5659766
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“Informative” Prior Bayesian MLR
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Model Fit with brms

Let's next examine “informative” priors of Bage ~ N(0.2,0.1) and
Bsmoke ~ N(—0.33,0.5) and assume default priors for everything else (e.g.,
the intercept, sigma):
mod2 <- brm( fev ~ smoke + age, data=fev,
prior = c(
set_prior("normal(0.2,0.1)", class="b", coef="age"),
set_prior("normal(-0.33,0.5)", class="Db", coef='"smokesmoker")),
seed = 123, # set seed for reproducibility
chains = 4, # number of chains
warmup = 1000, # burn-in length to discard from iter
iter = 2000) # total number of iterations
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Informative Prior Model Summary
summary (mod2)

## Family: gaussian

## Links: mu = identity; sigma = identity

## Formula: fev ~ smoke + age

## Data: fev (Number of observations: 654)

## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

## total post-warmup draws = 4000

##

## Population-Level Effects:

## Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.37 0.08 0.21 0.53 1.00 3797 3359
## smokesmoker -0.21 0.08 -0.37 -0.05 1.00 3559 3110
## age 0.23 0.01 0.21 0.25 1.00 3571 3387
##

## Family Specific Parameters:

## Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

## sigma 0.57 0.02 0.54 0.60 1.00 3758 2993

##

## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

@ Results similar to “noninformative” priors
@ In this case, not a major difference in results
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Nonsensical, Poorly Specified Priors Bayesian
MLR
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Model Fit with brms

Let's next examine strong priors that have more extreme (and nonsensical)
effects and small standard deviations of 5,5 ~ N(25,0.1) and

Bsmoke ~ N(—25,0.1) and assume default priors for everything else (e.g.,
the intercept, sigma):

mod3 <- brm( fev ~ smoke + age, data=fev,

prior = c(
set_prior("normal(25,0.1)", class="b", coef="age"),
set_prior("normal(-25,0.1)", class="b", coef="smokesmoker")),

seed = 123, # set seed for reproductibility

chains = 4, # number of chains

warmup = 1000, # burn-in length to discard from iter

iter = 2000) # total number of iterations
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Poorly Specified Prior Model Summary

summary (mod3)

## Family: gaussian

## Links: mu = identity; sigma = identity

## Formula: fev ~ smoke + age

## Data: fev (Number of observations: 654)

## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

## total post-warmup draws = 4000

##

## Population-Level Effects:

## Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -240.49 2.15 -244.77 -236.15 1.00 3999 2826
## smokesmoker -25.00 0.10 -25.20 -24.81 1.00 4539 3453
## age 24.72 0.10 24.53 24.92 1.00 4435 2852
##

## Family Specific Parameters:

## Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

## sigma 69.56 1.96 65.88 73.44 1.00 4289 3242

##

## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

@ Results very different from our prior models

@ Priors have overwhelmed our observed data and posterior estimates are
more reflective of the prior

@ Since priors include effects that are not plausible for our FEV outcome,

we would definitely want to consider different models
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Closing Summary

Bayesian approaches to linear regression give us the flexibility to incorporate
prior information and to calculate summaries (e.g., posterior probabilities
and credible intervals) with more intuitive interpretations.

Other Bayesian languages and packages exist, and can be used to fit
regression models. Feel free to explore different options!

In practice, we should consider multiple (reasonably specified) priors. In this
example, our final poorly specified example illustrates the dangers that can
happen if we are not careful.
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