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Motivating Example
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Motivation

We are interested in the association between sex hormone binding globulin
(SHBG) and age in years for males 6-80 years old from the NHANES
2015-2016 cycle (n = 3390 with SHBG)*. The scatterplot suggests there is
some sort of non-linear trend:
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*Note: NHANES uses a complex, multistage, probability sampling design to mirror the US
population, but will ignore this for our example. Also, all individuals 80+ are given an age of 80.
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Linear Regression

One modeling strategy from class would be simple linear regression:
mod_lm <- lm(SHBG~RIDAGEYR, data=dat)
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We can see that our SLR does not fit the data very well.
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Regression with Polynomials or Splines

Another modeling strategy may be including polynomial or spline terms in
our linear regression:
mod_poly3 <- lm(SHBG~poly(RIDAGEYR,3, raw=T), data=dat) # Order 3
mod_ns <- lm(SHBG ~ splines::ns(RIDAGEYR, df=4), data=dat)

20 40 60 80

0
10

0
25

0

Age (Years)

S
H

B
G

 (
nm

ol
/L

)

Polynomial Order 3 Natural Cubic Spline (df=4)

We see better fits than the SLR, but the β̂’s are challenging to interpret.
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Segmented Regression

One approach that may be more interpretable is conducting a segmented
regression analysis (also known as piecewise, broken-line, or changepoint
regression model):
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Introduction to Segmented Regression
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Segmented Regression

A segmented regression evaluates the relationship between your response
(Y ) and the explanatory variables (X ) based on fitting piecewise linear
regressions that allow changes in the model at a breakpoint/changepoint ψ.

Depending on the context, a segmented model could have multiple
breakpoints (e.g., ψ1, ψ2).

The breakpoint can be provided based on context (e.g., time an intervention
occurred, average age of puberty, etc.) or estimated from the data (e.g.,
using algorithms).
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Extension from Linear Regression

The segmented regression model is an extension of a linear regression model.
Consider a linear regression model with one predictor X , then our
segmented regression model would be:

Yi = β0 + β1Xi + β2(Xi − ψ)+ + ϵi , ϵ ∼ N(0, σ2
Y |X )

where

(Xi − ψ)+ = (Xi − ψ) × I(Xi > ψ) indicates if an observation Xi is
above the breakpoint (with I(·) being the indicator function)
ϵi is our traditional error term from a linear regression model
β0 is our intercept for the first segment
β1 is the slope for X in our first segment
β2 is the difference-in-slope for segment 2 compared to segment 1

BIOS 6618 (CU Anschutz) Segmented Linear Regression 10 / 26



Extension from Linear Regression

We can rewrite the mean response, E (Y ):

E (Y ) = β0 + β1Xi + β2(Xi − ψ)+

to identify the linear regressions within each segment. For instance,
segment 1’s linear regression is:

E (Y ) = β0 + β1Xi

Then, for values of Xi > ψ, segment 2’s linear regression is:

E (Y ) = β∗
0 + (β1 + β2)Xi

where β∗
0 is estimated based on the change in slope and location of ψ.
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Hypothesis Testing for Breakpoints

We may be interested in testing if a breakpoint is warranted, or if a more
parsimonious model (e.g., simple linear regression without a breakpoint)
could be used.

If the breakpoint does not exist, the difference-in-slopes parameter must be
zero, indicating a potential hypothesis test is: H0 : β2 = 0.

However, the validity conditions for standard statistical tests (e.g., Wald)
are not satisfied, with p-values being underestimated.

Therefore, a different approach is needed. . .
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Hypothesis Testing for Breakpoints: Davies’ Test

One approach for evaluating breakpoints is Davies’ test. It assumes there
are K fixed, ordered values of breakpoints ψ1 < ψ2 < · · · < ψK spanning
the range of X and our test statistics {S(ψk)}k have standard normal
distributions for fixed ψk (k = 1, ...,K ).1

Davies provides an upper bound for a one-sided p-value of:

p ≈ Φ(−M) + V exp(−M2/2)(8π)−1/2

where M = max(S(ψk)) and V =
∑

k(|S(ψk) − S(ψk−1)|) is the total
variation of {S(ψk)}k .

As an upper bound, Davies overestimates and is slightly conservative.

Usually, 5 ≤ K ≤ 10 or the quantiles of X .

1Muggeo, V. M. (2008). Segmented: an R package to fit regression models with
broken-line relationships. R news, 8(1), 20-25.
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Example in R
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R Code

Let’s revisit our NHANES example and apply a segmented regression.

We will examine:

General code to fit/evaluate
Testing if the change in slopes before/after the breakpoint is significant
Changing the number of breakpoints

First we will load the segmented package:
library(segmented)
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Example: Segmented Regression with 1 Breakpoint
mod_lm <- lm(SHBG~RIDAGEYR, data=dat) # First fit a lm/glm object
os <- segmented(mod_lm) # Fit segmented regression
summary(os) # See summary

##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.lm(obj = mod_lm)
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.RIDAGEYR 15.541 0.202
##
## Meaningful coefficients of the linear terms:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 189.8303 3.8113 49.81 <2e-16 ***
## RIDAGEYR -10.5888 0.3497 -30.28 <2e-16 ***
## U1.RIDAGEYR 11.2143 0.3508 31.97 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27.48 on 3386 degrees of freedom
## Multiple R-Squared: 0.4055, Adjusted R-squared: 0.405
##
## Boot restarting based on 6 samples. Last fit:
## Convergence attained in 2 iterations (rel. change 1.1662e-12)
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Example: Davies’ Test

Let’s evaluate if the difference-in-slopes is significantly different from 0 (i.e.,
do we need a breakpoint):
# Notice we provide the lm() model:
davies.test(mod_lm, k=10)

##
## Davies' test for a change in the slope
##
## data: formula = SHBG ~ RIDAGEYR , method = lm
## model = gaussian , link = identity
## segmented variable = RIDAGEYR
## 'best' at = 14.222, n.points = 8, p-value < 2.2e-16
## alternative hypothesis: two.sided

We see that p < 0.001, so we reject H0 that β2 = 0 and conclude that
there is a significant difference-in-slopes (i.e., a breakpoint at 15.541 years
does lead to a significant change before and after this age in SHBG).
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Example: Confidence Interval Around Breakpoint
Location

The segmented packages allows us to easily estimate a CI around the
breakpoint location:
confint(os)

## Est. CI(95%).low CI(95%).up
## psi1.RIDAGEYR 15.5412 15.1457 15.9367

The CI can be interpreted as being 95% confident that the true breakpoint
falls between 15.1457 and 15.9367.

Note, given our larger sample size the 95% CI is fairly narrow. In smaller
samples there may be more uncertainty around the “true” breakpoint
location.
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Example: SLR in Each Segment

Next, let’s estimate the fitted regression within each segment:
intercept(os) # intercept in each segment

## $RIDAGEYR
## Est.
## intercept1 189.830
## intercept2 15.547
slope(os) # slopes of age (X) in each segment

## $RIDAGEYR
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 -10.58900 0.349660 -30.283 -11.27400 -9.9032
## slope2 0.62551 0.027737 22.551 0.57113 0.6799

We see that before 15.5 years, the fitted regression is:
ŶI(X≤15.5) = 189.830 + −10.589Xage

And after 15.5 years it is:
ŶI(X>15.5) = 15.547 + 0.626Xage
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Example: SLR in Each Segment

We can also evaluate statistical significance by examining the CIs:
## $RIDAGEYR
## Est. St.Err. t value CI(95%).l CI(95%).u
## slope1 -10.58900 0.349660 -30.283 -11.27400 -9.9032
## slope2 0.62551 0.027737 22.551 0.57113 0.6799

For those 6 to 15.5 years, there is a significant decrease in average SHBG of
10.59 nmol/L (95% CI: -11.27 to -9.90 nmol/L) for every one year increase
in age.

For those 15.5 to 80 years, there is a significant increase in average SHBG
of 0.63 nmol/L (95% CI: 0.57 to 0.68 nmol/L) for every one year increase
in age.

Note, slope() estimates are based on a limiting Gaussian distribution and
the approximation does not support estimating a p-value from the t-value.
See ?slope help documentation for more information.
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Example: Plotting Segmented Results
par( mgp=c(2,1,0) )
plot(x=dat$RIDAGEYR, y=dat$SHBG, xlab='Age (Years)', ylab='SHBG (nmol/L)',

col='gray85', cex.lab=0.8, cex.axis=0.8, cex=0.5)
plot(os, add=T, col='blue', lwd=2)

20 40 60 80

0
50

15
0

25
0

Age (Years)

S
H

B
G

 (
nm

ol
/L

)

BIOS 6618 (CU Anschutz) Segmented Linear Regression 21 / 26



Example: More Than 1 Breakpoint?

We can also fit models with more than 1 breakpoint or evaluate if a model
could benefit from more breakpoints.

First, we can evaluate if our current segmented regression would benefit
from an additional breakpoint by providing the os segmented regression
object and using davies.test():
davies.test(os)

##
## Davies' test for a change in the slope
##
## data: formula = SHBG ~ RIDAGEYR + U1.RIDAGEYR , method = segmented.lm
## model = gaussian , link = identity
## segmented variable = RIDAGEYR
## 'best' at = 47.111, n.points = 8, p-value = 4.6e-08
## alternative hypothesis: two.sided

We see from this output that a model with one more breakpoint may result
in a better fit by using the npsi argument:
os2 <- segmented(mod_lm, npsi=2) # two breakpoints
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Example: More Than 1 Breakpoint?

Would a model with 3 breakpoints be better than one with 2?
davies.test(os2)

##
## Davies' test for a change in the slope
##
## data: formula = SHBG ~ RIDAGEYR + U1.RIDAGEYR + U2.RIDAGEYR , method = segmented.lm
## model = gaussian , link = identity
## segmented variable = RIDAGEYR
## 'best' at = 71.778, n.points = 8, p-value = 0.04781
## alternative hypothesis: two.sided

Since p=0.048 < 0.05, we may wish to add another breakpoint:
os3 <- segmented(mod_lm, npsi=3) # three breakpoints
davies.test(os3)$p.value # 4th not warranted

## [1] 0.8729932

A 4th breakpoint does not appear to be warranted given p = 0.873 > 0.05.
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Example: AIC/BIC to Select Breakpoints

We can also compare models with model selection criterion (e.g., BIC):
# AIC
c('1 Breakpoint'=AIC(os), '2 Breakpoints'=AIC(os2), '3 Breakpoints' = AIC(os3))

## 1 Breakpoint 2 Breakpoints 3 Breakpoints
## 32092.79 32055.64 32049.56
# BIC
c('1 Breakpoint'=BIC(os), '2 Breakpoints'=BIC(os2), '3 Breakpoints' = BIC(os3))

## 1 Breakpoint 2 Breakpoints 3 Breakpoints
## 32123.44 32098.54 32104.72

The model with 2 breakpoints minimizes our BIC, whereas the model with 3
breakpoints minimizes AIC. Depending on our context and desire for a parsimonious
(i.e., simpler) model, we could use any of our models with 1, 2, or 3 breakpoints.
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Example: Plot with 1/2/3 Breakpoints
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1 Breakpoint 2 Breakpoints 3 Breakpoints

1 Breakpoint: 15.54
2 Breakpoint: 14.85, 45.07
3 Breakpoint: 15.05, 44.00, 76.10
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Segmented Regression Summary

Segmented regression models help us address non-linear trends by fitting
separate (linear) piecewise regressions. They may be especially useful for
problems where identifying or testing a changepoint is the primary research
question.

There are also alternatives to using segmented regression that we discuss in
other lectures, including polynomial regression or regression models with
splines for continuous predictors.
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