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Motivating Example
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Motivation

We are interested in the association between sex hormone binding globulin
(SHBG) and age in years for males 6-80 years old from the NHANES
2015-2016 cycle (n = 3390 with SHBG)*. The scatterplot suggests there is
some sort of non-linear trend:
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*Note: NHANES uses a complex, multistage, probability sampling design to mirror the US
population, but will ignore this for our example. Also, all individuals 80+ are given an age of 80.
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Linear Regression

One modeling strategy from class would be simple linear regression:
mod_lm <- lm(SHBG~RIDAGEYR, data=dat)
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We can see that our SLR does not fit the data very well.
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Polynomial Regression

Another modeling strategy may be polynomial regression (i.e., including
higher order terms of X ):
mod_poly2 <- lm(SHBG~poly(RIDAGEYR,2, raw=T), data=dat) # Order 2
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Order 2 Order 3 Order 4

We see the polynomial models are better fits than the SLR, but there may
be concerns with poor fit (Order 2) or overfitting (Order 4).
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Polynomial Splines

A more flexible alternative to polynomial regression that we will explore in
this lecture is the use of polynomial splines to flexibly model the association
of age with SHBG:
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Order 3 B−Spline (df=4) Natural Cubic (df=3)
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Introduction to Splines
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Splines

Splines allow us to mathematically reproducible flexible shapes.1

In linear regression, splines provide flexibility to model continuous predictors
that have non-linear trends. The concept is that knots are placed at several
places in the data range of X with adjacent functional pieces joined
together.

There are many types of splines, but in this lecture we will focus on
B-splines and natural cubic splines. The type of polynomial and
number/placement of knots is what then defines the type of spline.

1Many of our details come from: Perperoglou, A., Sauerbrei, W., Abrahamowicz, M.,
& Schmid, M. (2019). A review of spline function procedures in R. BMC medical research
methodology, 19(1), 1-16.
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Building from Polynomial Regression

Our polynomial regression model with order 3 is:

Yi = β0 + β1Xi + β2X 2
i + β3X 3

i + ϵi

We can think of this also as:

Yi = β0 + β1ui + β2u2
i + β3u3

i + ϵi

where u is a function of X called a basis function. In the case of polynomial
regression, it can be represented by a matrix as:

U =

1 X1 X 2
1 X 3

1
...

...
...

...
1 Xn X 2

n X 3
n


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Building from Polynomial Regression

Yi = β0 + β1ui + β2u2
i + β3u3

i + ϵi

can also be represented as

Yi = f (Xi) + ϵ

where f () is some function/transformation of the predictor.

One limitation of polynomial regression is non-locality, where the fitted
regression line at any arbitrary point X0 depends on the data across the
entire range. Therefore, changes to observed values near the boundary (e.g.,
min or max of X ) can lead to changes in the fitted function far from that
value.
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Building from Polynomial Regression

As an alternative to fitting a global polynomial over the entire range of X ,
we can instead partition X into smaller intervals based on an arbitrary
number and position of points τ (i.e., knots) and fit localized polynomials.
This is the general concept behind splines.

If we define a set of knots, τ1 < · · · < τK , over the range of X , our spline
f (X ) will be a smooth function of polynomial of degree d .

We can obtain more flexible curves by either increasing the number of knots
and/or the degree of the polynomial. However, we have to be balance the
bias-variance trade-off:

If we increase the number of knots and/or d too greatly, we may
overfit the data and increase our variance.
If we choose too few knots and/or a low polynomial degree, we may
poorly fit the data and increase our bias.
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B-Splines (Technical)

The B-spline basis is a common spline basis and can be fit in R using the
splines::bs() function.

The B-spline basis is based on the knot sequence:

ξ1 ≤ · · · ≤ ξd ≤ ξd+1 < ξd+2 < · · · ξd+K+1

< ξd+K+2 ≤ ξd+K+3 ≤ · · · ≤ ξ2d+K+2

The “inner knots” are represented by ξd+2 = τ1, · · · , ξd+K+1 = τK .

The “boundary knots” are defined as ξd+1 = a and ξd+K+2 = b.

The choice of additional knots ξ1, · · · , ξd and ξd+K+3, · · · , ξ2d+K+2 is
somewhat arbitrary, with a common strategy being to set them equal to the
boundary knots.2

2Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., & Schmid, M. (2019). A review
of spline function procedures in R. BMC medical research methodology, 19(1), Page 5.
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B-Splines (Technical)

From Perperoglou, et al.,3, for d > 0, B-spline basis functions of degree d
(denoted by Bd

k (x)) are defined by the recursive formula:

Bd
k (x) = x − ξk

ξk+d − ξk
Bd−1

k (x) − ξk+d+1 − x
ξk+d+1 − ξk+1

Bd−1
k+1 (x)

for k = 1, ..., d + K + 1 where

B0
k(x) =

{
1 ξk ≤ x < ξk+1

0 else

and B0
k(x) ≡ 0 if ξk = ξk+1.

3Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., & Schmid, M. (2019). A review
of spline function procedures in R. BMC medical research methodology, 19(1), Page 1-16.
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Natural Cubic Splines (Technical)

Polynomial splines like the B-spline can be erratic on the boundaries of the
data.

To address this potential limitation, natural splines represent cubic splines
with additional constraints that they are linear in the tails of the boundary
knots: (−∞, a], [b, +∞).

This constraint is achieved by requiring the spline function f to satisfy that
both the second and third derivative equal 0: f ′′ = f ′′′ = 0.

This requirement leads to four additional constraints that a natural spline
basis on K knots has K + 1 degrees of freedom.4

4Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., & Schmid, M. (2019). A review
of spline function procedures in R. BMC medical research methodology, 19(1), Page 1-16.
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Spline Interpretations

One challenge of splines is interpretation of regression coefficients related to
the terms included in the spline. This is a similar challenge to polynomial
regression.

For a primary explanatory variable (PEV) of interest, it may be most
advantageous to focus on graphical summaries of the data and overall tests
of the contribution of the PEV modeled by the spline.

In multiple linear regression models, you may be using splines to adjust for
other variables beyond the PEV. In this case, we can interpret our PEV in
the same way we do for a multiple linear regression (i.e., for a 1-unit
increase in XPEV there is an average change of β̂PEV in our outcome, after
adjusting for all other variables in the model).
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Example in R
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R Code

Let’s revisit our NHANES example and see some properties of the B-splines
and natural cubic splines with code.

We will examine:

General code to fit/evaluate
Changing the degrees of freedom (i.e., number of knots)
Changing the polynomial degree
Plotting with confidence intervals

First we will load the splines package included in base R:
library(splines)
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bs and ns Splines Code
# Model with defined by degrees of freedom
lm(SHBG ~ bs(RIDAGEYR, df=4), data=dat)
lm(SHBG ~ ns(RIDAGEYR, df=4), data=dat)

# Model with B-spline defining degree of polynomial (default is 3)
lm(SHBG ~ bs(RIDAGEYR, df=4, degree=6), data=dat)
# ns assumes cubic polynomial terms, no degree argument

## Predicting values for fitted regression
mod <- lm(SHBG ~ bs(RIDAGEYR), data=dat) # fit model
newdat <- data.frame(RIDAGEYR = 6:80) # create DF for use in predict
y_pred <- predict(mod, newdata=newdat) # predict Y-hat
y_pred_withCI <- predict(mod, newdata=newdat,

interval='confidence') # include 95% CI
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B-spline Examples: Degrees of Freedom
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B-spline Examples: Polynomial Degree
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B-spline Examples: Polynomial Degree/DF
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Natural Cubic Spline Example: 99.99% CI
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Given large n, using 99.99% CI to show interval on plot for ns(RIDAGER, df=4) example.
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Choice of “Optimal” Parameter for Smoothing

We will not delve too deeply into example of how to select the optimal
parameter for smoothing, but various approaches exist (some of which are
covered in our class more generally):

Use of visual evaluation (e.g., seeing that the data does not appear to
be overfit)
Model selection criterion (e.g., AIC, AICc, BIC, etc.) to compare
models with different parameters (minimized AIC is preferred)
Cross validation (CV) by dividing the N data points into K
groups/folds for train/test set evaluation
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Splines Summary

Splines provide a flexible approach to modeling non-linear predictors that
may appropriately account for their association with an outcome.

We saw that different parameters led to different fits, some of which may be
over- or under-fitting the data.

There are numerous types/approaches to splines that go well beyond the
introduction here. Feel free to explore smoothing splines, penalized splines,
etc. to consider their abilities to handle non-linear data in different settings.

There are also alternatives to using splines that we discuss in other lectures,
including polynomial regression or segmented (change point) regression
models.
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