Common Discrete Distributions: Bernoulli, Binomial, and Poisson

BIOS 6611

CU Anschutz

Week 2

- **[Bernoulli Distribution](#page-6-0)**
- **[Binomial Distribution](#page-8-0)**
- **[Poisson Distribution](#page-15-0)**
- **[Means and Variances of Common Discrete Distributions](#page-18-0)**

[Discrete Random Variables](#page-2-0)

Random Variable

- **Random Variable**: variable whose values depend on a random phenomenon. Possible values represent possible outcomes of a yet-to-be-performed experiment.
- We call these possible values the **sample space**
- Notation: *X* denotes a random variable

Discrete Random Variable

- **Discrete random variable**: sample space is a discrete list of values
	- Ex: Let X denote random experiment of flipping a coin. The possible outcomes are {Heads*,*Tails}.
- Characterized by a **probability mass function (PMF)**: function that gives probability that X is equal to values in sample space.
	- \triangleright Values must be non-negative and sum to 1
	- **Notation:**

 $P(X = k) =$ function that depends on k, $k = \{$ sample space $\}$

PMF Example

$$
P(X = 1) = 0.2
$$

\n
$$
P(X = 3) = 0.5
$$

\n
$$
P(X = 7) = 0.3
$$

$$
k = \{1, 3, 7\}
$$

Figure 1: Example PMF (Source: Wiki)

BIOS 6611 (CU Anschutz) [Common Discrete Distributions: Bernoulli, Binomial, and Poisson](#page-0-0) Week 2 6 / 20

[Bernoulli Distribution](#page-6-0)

Bernoulli Random Variables

- **Bernoulli Random Variable**: sample space is two discrete values
	- \triangleright Ex: flipping a coin (heads, tails), whether a good pupper catches a treat (success, fail)
- Call one outcome "success", though this can be arbitrary
- Often let 1 represent "success", 0 represent "failure"
- One parameter, p, gives probability of success $(0 \le p \le 1)$

Bernoulli PMF:

$$
P(X = k) = p^{k}(1-p)^{1-k}, k = \{0,1\}
$$

$$
P(X = 1) = p
$$

$$
P(X = 0) = 1 - p
$$

[Binomial Distribution](#page-8-0)

Binomial Random Variables

- Say want to count number of successes in many Bernoulli trials
- Number of successes is a **Binomial Random Variable**
	- Ex: If I throw 5 treats at my pup, how many do they catch?
- Two parameters: p is probability of success in one trial $(0 \le p \le 1)$, n is total number of trials $(n \in \{0, 1, 2, \ldots\})$
- Bernoulli is special case of Binomial when $n = 1$

Binomial PMF:

$$
P(X=k) = {n \choose k} p^{k} (1-p)^{n-k}, \quad k=0,1,\ldots,n
$$

$$
P(X = 0) = (1 - p)^n
$$

\n
$$
P(X = 1) = np^1(1 - p)^{n-1}
$$

\n
$$
P(X = 2) = {n \choose 2} p^2 (1 - p)^{n-2}
$$

Why $\binom{n}{k}$ k **?**

Q: Why need $\binom{n}{k}$ $\binom{n}{k}$ in Binomial PMF?

A: To account for fact that there are multiple ways to get k successes.

For example, say we throw our pup 3 treats, so X ∼ Binom(3*,* p). Want to know probability that they catch 2 (or 2 "successes"), so want $P(X = 2)$. There are $\binom{n}{k}$ $\binom{n}{k} = \binom{3}{2}$ $2³$) $=$ 3 ways this could happen: catches on first and second, first and third, or second and third throws.

In general, $\binom{n}{k}$ $\binom{n}{k}$ is the number of ways to choose k elements from n elements, in any order.

$$
\binom{n}{k} = \frac{n!}{(n-k)!k!} \tag{1}
$$

Binomial Distribution in R

 \bullet Let's simulate 10,000 samples from *X* ∼ *Binom*(*n* = 8*, p* = 0.5) rbinom in R.

For help documentation, type ?rbinom

Simulate data set.seed(812)

Note here, n is number of simulated samples # size is number of trials binom_sample \le rbinom($n = 10000$, size = 8, prob = 0.5)

Binomial Distribution in R

hist(binom_sample, main="Simulated Binomial RV", $x \text{lab="k"$, breaks = $seq(-0.5, 8.5, 0.2)$

Other functions for Binomial Distribution in R

• dbinom: PMF (d for "density")

$$
P(X=k)
$$

pbinom: cumulative distribution function, CDF (p for "probability")

$$
P(X \le k) = P(X = 0) + P(X = 1) + \ldots + P(X = k)
$$

 \bullet gbinom: quantile function, smallest value of k such that

 $P(X \le k) > p$

Other functions for Binomial Examples

```
\bullet X \sim Binom(n = 8, p = 0.5).• P(X = 2) \leftrightarrow \text{dbinom}(x = 2, \text{ size} = 8, \text{ prob} = 0.5)• P(X \le 2) \leftrightarrow \text{phinom}(q = 2, \text{ size} = 8, \text{ prob} = 0.5)# PMF
dbinom(x=2, size=8, prob=0.5)## [1] 0.109375
# CDF
pbinom(q=2, size=8, prob=0.5)## [1] 0.1445313
dbinom(x=2, size=8, prob=0.5)+dbinom(x=1, size=8, prob=0.5)+
  dbinom(x=0, size=8, probe=0.5)
```
[1] 0.1445313

[Poisson Distribution](#page-15-0)

Poisson Random Variables

- **Poisson Random Variables**: number of "successes" that occur in a given time or space.
- Sample space is discrete and infinite: $k = 0, 1, 2, 3, \ldots$
- Often used for rare events
- Ex: number of meteorites greater than 1 meter diameter that strike Earth each year, infectious cells in well
- Characterized by rate parameter, $\lambda \in (0, \infty)$
- R functions: dpois, ppois, qpois, rpois

Poisson PMF:

$$
P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k = 0, 1, 2, 3, ... \tag{2}
$$

Poisson approximation to the binomial

If X ∼ Binom(n*,* p) with n "large" (n ≥ 100) and p "small" (p ≤ 0*.*01), then X can be approximated as a Poisson distribution with $\lambda = np$.

$$
Binom(n, p) \to Poiss(\lambda = np)
$$
 (3)

Can make computations easier (although nowadays, often not as necessary with modern computers).

[Means and Variances of Common Discrete](#page-18-0) [Distributions](#page-18-0)

Means and Variances of Common Discrete Distributions

 $\bullet X \sim Bern(p)$ $E[X] = p$ $Var[X] = p(1-p)$ X ∼ Binom(n*,* p) $E[X] = np$ $Var[X] = np(1-p)$ \bullet *X* ∼ *Poiss*(λ) $E[X] = \lambda$ $Var[X] = \lambda$

Recall,

$$
E[X] = \mu = \sum_{i} k_i P(X = k_i)
$$

Var[X] = $\sigma^2 = \sum_{i} (k_i - \mu)^2 P(X = k_i)$

BIOS 6611 (CU Anschutz) [Common Discrete Distributions: Bernoulli, Binomial, and Poisson](#page-0-0) Week 2 20 / 20