
Common Discrete Distributions: Bernoulli,
Binomial, and Poisson

BIOS 6611

CU Anschutz

Week 2

BIOS 6611 (CU Anschutz) Common Discrete Distributions: Bernoulli, Binomial, and Poisson Week 2 1 / 20



1 Discrete Random Variables

2 Bernoulli Distribution

3 Binomial Distribution

4 Poisson Distribution

5 Means and Variances of Common Discrete Distributions

BIOS 6611 (CU Anschutz) Common Discrete Distributions: Bernoulli, Binomial, and Poisson Week 2 2 / 20



Discrete Random Variables
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Random Variable

Random Variable: variable whose values depend on a random
phenomenon. Possible values represent possible outcomes of a
yet-to-be-performed experiment.
We call these possible values the sample space
Notation: X denotes a random variable
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Discrete Random Variable

Discrete random variable: sample space is a discrete list of values
I Ex: Let X denote random experiment of flipping a coin.The possible

outcomes are {Heads,Tails}.
Characterized by a probability mass function (PMF): function that
gives probability that X is equal to values in sample space.

I Values must be non-negative and sum to 1
I Notation:

P(X = k) = function that depends on k,
k = {sample space}
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PMF Example

P(X = 1) = 0.2
P(X = 3) = 0.5
P(X = 7) = 0.3

k = {1, 3, 7}

Figure 1: Example PMF (Source: Wiki)
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Bernoulli Distribution
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Bernoulli Random Variables

Bernoulli Random Variable: sample space is two discrete values
I Ex: flipping a coin (heads, tails), whether a good pupper catches a treat

(success, fail)
Call one outcome “success”, though this can be arbitrary
Often let 1 represent “success”, 0 represent “failure”
One parameter, p, gives probability of success (0 ≤ p ≤ 1)

Bernoulli PMF:

P(X = k) = pk(1− p)1−k , k = {0, 1}

P(X = 1) = p
P(X = 0) = 1− p
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Binomial Distribution
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Binomial Random Variables

Say want to count number of successes in many Bernoulli trials
Number of successes is a Binomial Random Variable

I Ex: If I throw 5 treats at my pup, how many do they catch?
Two parameters: p is probability of success in one trial (0 ≤ p ≤ 1), n
is total number of trials (n ∈ {0, 1, 2, . . .})
Bernoulli is special case of Binomial when n = 1

Binomial PMF:

P(X = k) =
(

n
k

)
pk(1− p)n−k , k = 0, 1, . . . , n

P(X = 0) = (1− p)n

P(X = 1) = np1(1− p)n−1

P(X = 2) =
(

n
2

)
p2(1− p)n−2

. . .
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Why
(n

k
)
?

Q: Why need
(n

k
)
in Binomial PMF?

A: To account for fact that there are multiple ways to get k successes.

For example, say we throw our pup 3 treats, so X ∼ Binom(3, p). Want to
know probability that they catch 2 (or 2 “successes”), so want P(X = 2).
There are

(n
k
)

=
(3

2
)

= 3 ways this could happen: catches on first and
second, first and third, or second and third throws.

In general,
(n

k
)
is the number of ways to choose k elements from n elements,

in any order. (
n
k

)
= n!

(n − k)!k! (1)
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Binomial Distribution in R

Let’s simulate 10,000 samples from X ∼ Binom(n = 8, p = 0.5)
rbinom in R.

# For help documentation, type ?rbinom

# Simulate data
set.seed(812)

# Note here, n is number of simulated samples
# size is number of trials
binom_sample <- rbinom(n = 10000, size = 8, prob = 0.5)
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Binomial Distribution in R

hist(binom_sample, main="Simulated Binomial RV",
xlab="k", breaks = seq(-0.5, 8.5, 0.2))

Simulated Binomial RV
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Other functions for Binomial Distribution in R

dbinom: PMF (d for “density”)

P(X = k)

pbinom: cumulative distribution function, CDF (p for “probability”)

P(X ≤ k) = P(X = 0) + P(X = 1) + . . .+ P(X = k)

qbinom: quantile function, smallest value of k such that

P(X ≤ k) ≥ p
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Other functions for Binomial Examples

X ∼ Binom(n = 8, p = 0.5).
P(X = 2)↔ dbinom(x = 2, size = 8, prob = 0.5)
P(X ≤ 2)↔ pbinom(q = 2, size = 8, prob = 0.5)

# PMF
dbinom(x=2, size=8, prob=0.5)

## [1] 0.109375

# CDF
pbinom(q=2, size=8, prob=0.5)

## [1] 0.1445313

dbinom(x=2, size=8, prob=0.5)+dbinom(x=1, size=8, prob=0.5)+
dbinom(x=0, size=8, prob=0.5)

## [1] 0.1445313
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Poisson Distribution
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Poisson Random Variables

Poisson Random Variables: number of “successes” that occur in a
given time or space.
Sample space is discrete and infinite: k = 0, 1, 2, 3, . . .
Often used for rare events
Ex: number of meteorites greater than 1 meter diameter that strike
Earth each year, infectious cells in well
Characterized by rate parameter, λ ∈ (0,∞)
R functions: dpois, ppois, qpois, rpois

Poisson PMF:

P(X = k) = e−λλk

k! , k = 0, 1, 2, 3, . . . (2)
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Poisson approximation to the binomial

If X ∼ Binom(n, p) with n “large” (n ≥ 100) and p “small” (p ≤ 0.01),
then X can be approximated as a Poisson distribution with λ = np.

Binom(n, p)→ Poiss(λ = np) (3)

Can make computations easier (although nowadays, often not as necessary
with modern computers).
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Means and Variances of Common Discrete
Distributions
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Means and Variances of Common Discrete
Distributions

X ∼ Bern(p)

E [X ] = p Var [X ] = p(1− p)

X ∼ Binom(n, p)

E [X ] = np Var [X ] = np(1− p)

X ∼ Poiss(λ)
E [X ] = λ Var [X ] = λ

Recall,

E [X ] = µ =
∑

i
kiP(X = ki)

Var [X ] = σ2 =
∑

i
(ki − µ)2P(X = ki)
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