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Probability for Bivariate Distributions
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Probability

Probability is the likelihood that a given event, or combination of events,
will occur. There are two important rules:

A probability can range from 0 to 1
The sum of all probabilities in a sample space must sum to 1

Most often in class we will be working with probability distributions (e.g.,
binomial, normal, t, etc.).
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Bivariate Distributions

A bivariate distribution is a distribution that is defined by two random
variables.

For our motivating example, let’s consider a respiratory disease (Y ) and
smoking (X ):

Smoker
(X=1)

Non-Smoker
(X=0) Total

Respiratory
Disease (Y=1) 0.15 0.05 0.20

No Respiratory
Disease (Y=0) 0.30 0.50 0.80

Total 0.45 0.55 1.00

BIOS 6611 (CU Anschutz) Probabilities: Joint, Marginal, and Conditional Week 2 5 / 17



Joint Distribution

Based on our bivariate distribution, we can calculate the joint distribution
for any two observed values of X (smoking) and Y (respiratory disease):

P(X = x and Y = y) = P(X = x ∩ Y = y)

What is the probability of
randomly sampling a non-smoker
with a respiratory disease?

X=1 X=0 Total
Y=1 0.15 0.05 0.20
Y=0 0.30 0.50 0.80
Total 0.45 0.55 1.00
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Marginal Distribution

The marginal distribution is the individual probability distribution for each
random variable (i.e., P(X = x), P(Y = y)). For our bivariate example we
can add the cells together that represent a given random variable value (i.e.,
the “Total” column/row).
What is the probability of
randomly sampling a non-smoker?

What is the probability of
randomly sampling someone
without respiratory disease?

X=1 X=0 Total
Y=1 0.15 0.05 0.20
Y=0 0.30 0.50 0.80
Total 0.45 0.55 1.00
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Conditional Distribution

The conditional distribution is the probability distribution of a random
variable when another random variable is known to be a particular value:

P(X = x |Y = y) = P(X = x ∩ Y = y)
P(Y = y)

For a non-smoker, what is the
probability of having a respiratory
disease?

For a smoker, what is the
probability of having a respiratory
disease?

X=1 X=0 Total
Y=1 0.15 0.05 0.20
Y=0 0.30 0.50 0.80
Total 0.45 0.55 1.00
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Independence of Two Random Variables

Two random variables X and Y are independent iff (if and only if)

P(X = x ∩ Y = y) = P(X = x)× P(Y = y), or

P(Y = y |X = x) = P(Y = y)

Are X and Y independent in our
example? X=1 X=0 Total

Y=1 0.15 0.05 0.20
Y=0 0.30 0.50 0.80
Total 0.45 0.55 1.00
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Bayes’ Theorem
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Bayes’ Theorem (or Rule or Law)

Bayes’ Theorem calculates the posterior probability of an event based on
some prior probability by utilizing conditional probabilities.

The theorem shows how to take prior probabilities (e.g., assumed prevalence
of disease), incorporate new information (e.g., diagnostic test results), and
obtain revised (posterior) probabilities (e.g., predictive values).

In BIOS 6611 we will encounter this most heavily when discussing
diagnostic testing performance (e.g., sensitivity and specificity). However,
we can note that this nifty theorem serves as the foundation for the entire
Bayesian paradigm of statistics!
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Bayes’ Theorem Defined - Part 1

Before defining Bayes’ Theorem, it is helpful to note an extension from our
conditional probability formula from earlier:

P(X |Y ) = P(X ∩ Y )
P(Y ) =⇒ P(X ∩ Y ) = P(X |Y )P(Y )

By moving our probabilities around, we see that
P(X ∩ Y ) = P(X )P(X |Y ) = P(Y )P(Y |X ).
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Bayes’ Theorem Defined - Part 2

Before defining Bayes’ Theorem, it is helpful to recall the Total Law of
Probability (also found in Lecture SA3, Section D in the “Packet for
Enrolled Students”):

P(X ) =
k∑

i=1
P(X ∩ Yi) =

k∑
i=1

P(X |Yi)P(Yi)

This is how we calculated the marginal probability earlier, with k = 2 for our
bivariate distribution.
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Bayes’ Theorem in General

Without further ado, Bayes’ theorem states:

P(X |Y ) = P(Y |X )P(X )
P(Y )

(Yes, I know, a bit anticlimactic. . . )
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Bayes’ Theorem Future Motivation for BIOS 6611

To motivate our future diagnostic testing work, let’s define two new random
variables: Di represents i mutually exclusive and exhaustive disease states
(i = 1, ..., k) and T represents a positive test or presence of a symptom.
Then Bayes’ theorem states:

P(Di |T ) = P(T ∩ Di)
P(T ) = P(T |Di)P(Di)∑k

i=1 P(T |Di)P(Di)

Where the first equality is by our definition of conditional probability, and
the second is by the definition of joint probability and total probability.

BIOS 6611 (CU Anschutz) Probabilities: Joint, Marginal, and Conditional Week 2 15 / 17



Bayes’ Theorem as Applied in Bayesian Statistics

While beyond the scope of BIOS 6611, I think it is important to at least
introduce the roots of Bayesian analysis in practice. Let H represent a
hypothesis to be tested and D be the data which may given evidence for (or
against) H. Then Bayes’ theorem is

P(H|D) = P(D|H)P(H)
P(D)
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Bayes’ Theorem as Applied in Bayesian Statistics

P(H|D) = P(D|H)P(H)
P(D)

Each of these terms plays a different role:

P(H) is the prior (probability) that H is true before the data is
considered
P(D|H) is the likelihood and represents the evidence for H provided
by the observed data D
P(D) is the total probability of the data which takes into account all
possible hypotheses
P(H|D) is the posterior (probability) that H is true after the data
has been considered
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