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Random Variables
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Random Variable

Random variables and probability distributions are the theoretical or
mathematical representations of data values and frequency distributions.

Random Variable: variable whose values depend on a random
phenomenon. Possible values represent possible outcomes of a
yet-to-be-performed experiment.
We call these possible values the sample space
Notation:

I X ,Y ,Z denotes a random variable
I x , y , z denotes a value of the random variable
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Probability Distribution

The probability distribution describes the probabilities for each outcome
for

a discrete random variable (probability mass function, pmf )
the probabilities of values in a range for a continuous random variable
(probability density function, pdf )

The pmf/pdf is a useful tool for describing the frequency distributions of
random variables for the entire population of interest and for providing
probability statements about events involving random variables.
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Continuous Random Variable

Continuous random variable: sample space is an interval (or
continuum) with infinite possible values

I Ex: Let X denote the height of individuals in Denver. The possible
outcomes may be anything in the interval from (0, 2.72) meters.

I Characterized by a probability density function (PDF): function that
gives probability that X is a value that falls in some range of the sample
space.

I Notation:

P(X ∈ [c, d ]) = P(c ≤ X ≤ d)
P(X ∈ [c, d ]) = *function that depends on interval [c,d]*,

[c, d ] = {*interval in the sample space*}
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Continuous Random Variable

The probability at any specific value of a continuous random variable is 0:
P(X = x) = 0.
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PDFs and CDFs
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PDF

Let X be a continuous random variable and let x represent the possible
values that X can take on.

The PMF of discrete r.v. does not apply to continuous r.v., instead we
denote the function that assigns probability values to the r.v. as f (x)dx , or
the probability density function.

The probability distribution of X over the interval [a, b] is therefore
P(a ≤ X ≤ b) =

∫ b
a f (x)dx .

Similar to discrete r.v., the following conditions must be met

f (x) ≥ 0∫ b
a f (x)dx = 1, where [a, b] is the range of the entire possible sample
space
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PDF and Intervals

P(a ≤ X ≤ b) = P(X ≤ b)− P(X < a) = F (b)− F (a)

a bx

f(x)

− ∞ ∞
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Cumulative Distribution Function (CDF)
The cumulative probability distribution of X :
FX (a) = P(X ≤ a) =

∫ a
−∞ f (x)dx (i.e., the area under the curve (AUC)

from −∞ to a)

The CDF is a monotone
increasing function:
F (−∞) = 0, F (∞) = 1
The CDF and PDF are directly
related through the first
derivative: f (x) = d

dx F (x)
Every time we execute a
statistical test or determine a
p-value (level of significance), we
will be using the cdf of a
relevant continuous or discrete
random variable.
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PDF Example - Part 1

Assume that X is a r.v. with the PDF f (x) = 2x where 0 ≤ x ≤ 1. Plot
the PDF and check that it is valid.
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PDF Example - Part 2

Consider the PDF f (x) = 2x where 0 ≤ x ≤ 1. What is the probability that
X falls between 0 and 0.5?
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PDF Example - Part 3

Consider the PDF f (x) = 2x where 0 ≤ x ≤ 1. The CDF is F (x) = x2,
check the relationship with the PDF.
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PDF Example - Part 4

Consider the PDF f (x) = 2x where 0 ≤ x ≤ 1. What is the probability that
X is 0.5?
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Expected Value (Mean), Variance, Standard
Deviation (SD)
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Formulas

Expected Value: E (X ) =
∫∞
−∞ xf (x)dx = µ

Variance: Var(X ) =
∫∞
−∞(x − µ)2f (x)dx = σ2

Note, we also have the computational calculation of
Var(X ) = E [X 2]− (E [X ])2.

Standard Deviation: s.d .(X ) =
√

Var(X ) = σ

BIOS 6611 (CU Anschutz) Continuous Distributions: Expected Value, Variance, Standard DeviationWeek 3 17 / 20



Expected Value Example

Consider the PDF f (x) = 2x where 0 ≤ x ≤ 1. What is E (X )?

E (X ) =
∫ ∞
−∞

xf (x)dx =

BIOS 6611 (CU Anschutz) Continuous Distributions: Expected Value, Variance, Standard DeviationWeek 3 18 / 20



Variance Example

Consider the PDF f (x) = 2x where 0 ≤ x ≤ 1. What is Var(X )?

Var(X ) = E [X 2]− (E [X ])2 =

BIOS 6611 (CU Anschutz) Continuous Distributions: Expected Value, Variance, Standard DeviationWeek 3 19 / 20



Formula Review for Random Variables

Discrete r.v.

E (X ) = µ =
∑

x
xP(X = x)

Var(X ) = σ2 =
∑

x
(x − µ)2P(X = x)

= E [X 2]− (E [X ])2

SD(X ) = σ =
√

Var(X )

Continuous r.v.

E (X ) = µ =
∫ ∞
−∞

xf (x)dx

Var(X ) = σ2 =
∫ ∞
−∞

(x − µ)2f (x)dx

= E [X 2]− (E [X ])2

SD(X ) = σ =
√

Var(X )
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