The Normal Distribution

BIOS 6611

CU Anschutz

Week 3

- **2** Standard Normal Distribution
- **3** Population Moments and Describing Distributions
- The More You Know (FYI)

Properties

Welcome to the Rest of Your Life!

Source: The Good Place

BIOS 6611 (CU Anschutz)

The **normal distribution** (also called the *Gaussian distribution*) is one of the most important distributions in statistics

The normal distribution has unique properties that make it extraordinary:

- the central limit theorem
- the linear combination of normally distributed random variables is still normal
- it isn't terrible to work with mathematically

The PDF of the normal distribution is defined by two parameters:

- μ is the mean and represents the "location"
- σ^2 is the variance and represents the "squared scale", where $\sigma^2 > 0$

The probability density function is

$$f(x) = rac{1}{\sigma\sqrt{2\pi}} \exp\left(-rac{1}{2\sigma^2}(x-\mu)^2
ight), \ -\infty < x < \infty$$

From the PDF we could prove that $E(X) = \mu$ and $Var(X) = \sigma^2$ for the normal distribution

Normal Properties - I

The normal distribution is symmetric about μ (i.e., $f(\mu + x) = f(\mu - x)$):

Normal Properties - II

This symmetry also helps with some quick rules of thumb for probability:

•
$$P(\mu - \sigma < X < \mu + \sigma) = 0.6827$$
 (about 68% lies between ± 1 s.d.)

- $P(\mu 2\sigma < X < \mu + 2\sigma) = 0.9545$ (about 95% lies between ± 2 s.d.)
- $P(\mu 3\sigma < X < \mu + 3\sigma) = 0.9973$ (about 99.7% lies between ± 3 s.d.)

Normal Properties - III

The symmetry of the normal distribution also means that all three common summaries of central tendency (i.e., the mean, median, and mode) are all equal to μ

Quick Review:

- mean: the (arithmetic) average of our sample
- median: the middle value of our sample when arranged in order of magnitude (i.e., smallest to largest)
- mode: the most frequent value of our sample (i.e., the peak of the PDF)

The PDF Shape with Varying σ^2

Normal Random Variable

Standard Normal Distribution

The simplest form of the normal distribution is when $\mu = 0$ and $\sigma^2 = 1$: $X \sim N(0, 1)$. This is called the **standard normal distribution**.

The PDF for the standard normal distribution is

$$f(x) = rac{1}{\sqrt{2\pi}} \exp\left(-rac{1}{2}x^2
ight), \ -\infty < x < \infty$$

Here the PDF is simpler than the general form we saw earlier, where we now have E(X) = 0 and Var(X) = 1.

We can transform any normally distributed random variable (e.g., $X \sim N(\mu, \sigma^2)$) in a standard normal variable (e.g., $Z \sim N(0, 1)$):

$$Z = \frac{X - \mu}{\sigma}$$

Because the standard normal distribution is utilized so frequently, its PDF and CDF have special notation:

- $\phi(z)$ is our standard normal PDF
- $\Phi(z)$ is the standard normal CDF

$\Phi(z)$ of Yesteryear

T-2 Tables

TABLE A

Standard Normal probabilities

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064

BIOS 6611 (CU Anschutz)

The Normal Distribution

Week 3 14 / 22

$\Phi(z)$ (and more) of Today

Fortunately, we don't have to only rely on tables today. In R we can calculate the PDF ($\phi(z)$) with dnorm(), CDF ($\Phi(z)$) with pnorm(), or the value z is for a given area under the curve (AUC) with qnorm():

z <- -2.58 dnorm(z) #PDF

[1] 0.01430511

pnorm(z) #CDF

[1] 0.004940016

qnorm(0.004940016) #quantile (i.e., z-score for a given AUC)

[1] -2.58

BIOS 6611 (CU Anschutz)

Standard Normal PDF

BIOS 6611 (CU Anschutz)

Population Moments and Describing Distributions

Population Moments

So far we have discussed location and variability of distributions, but we can also describe the **skewness** and **kurtosis** of the population (or a sample also).

 $E(X) = \mu$ and $E(X^2)$ are population moments about zero.

 $E[(X - \mu)] = 0$ and $E[(X - \mu)^2] = \sigma^2$ are population moments about μ (these are also called *central* moments).

From the central moments we can represent the *standardized* moments by dividing the k^{th} standard deviation:

•
$$\frac{E[(X-\mu)^3]}{\sigma^3}$$
 represents the skewness
• $\frac{E[(X-\mu)^4]}{\sigma^4}$ represents the kurtosis

Skewness

Skewness describes the symmetry of the distribution.

- The 3rd central moment of the data, like the 1st, will balance out from left to right if the data are symmetric.
- With normally distributed data, we expect skewness to be 0 (i.e., balanced).
- If skewness is >0: positive skew; skewed to the right; more common
- If skewness is <0: negative skew; skewed to the left

BIOS 6611 (CU Anschutz)

The Normal Distribution

Kurtosis

Kurtosis describes the "tailedness" of the probability distribution. Often we are interested in the excess kurtosis, which is Kurt[X] - 3.

- Excess Kurtosis = 0, tails just like a normal distribution (*mesokurtic*); such as the normal distribution and binomial when $p = \frac{1}{2} \pm \sqrt{\frac{1}{12}}$
- Excess Kurtosis > 0, heavier/fatter tails than a normal distribution (*leptokurtic*); such as Student's t, exponential, and Poisson distributions
- Excess Kurtosis < 0, lighter/thinner tails than a normal distribution (*platykurtic*); such as uniform and Bernoulli distributions

The More You Know (FYI)

Some people prefer specifying the scale of then normal distribution in terms of its **precision** instead of the variance

The precision is the reciprocal of the variance: $\tau = \frac{1}{\sigma^2}$

The PDF in this parameterization is

$$f(x) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau(x-\mu)^2}{2}\right), \ -\infty < x < \infty$$

One of the more common places you will see this parameterization is with Bayesian statistics