Power and Sample Size

BIOS 6611

CU Anschutz

Week 4

1 Review of Important Definitions

Power Calculation Derivation for a Two-Sided, One-Sample Z-test

3 Two-Sided One-Sample Z-Test Calculations

4 Additional Considerations

Review of Important Definitions

Often in planning studies we are asked "How many subjects do I need for the study?" Or, "If I have 30 subjects, do I have enough power to see a significant result?"

These questions are not as readily answered as they might seem. The answers depend on several factors, which we will now examine. Finding rejection regions and p-values requires calculating probabilities assuming H_0 : $\mu = \mu_0$ is true. To find power we need to consider the flip side: H_0 is not true, and some specific alternative hypothesis H_1 is true.

Generic Example: A collaborating investigator says, "I want to do a study where I compare my new method to the standard method. How many subjects do I need? I think I can get 50, is that enough?"

Important Probabilities and Definitions

Recall, based on the data we make a decision to reject H_0 or to not reject H_0 , and we quantify the evidence against H_0 in the form of a p-value.

	Reality	
What we decide	H ₀ True	H ₀ False/H ₁ True
	Correct	
	Probability of	Type II Error
Fail to reject H ₀	correct decision $=$	
	$1-lpha={\sf level}$ of	$P(Type\;II\;Error)=\beta$
	confidence	
	Type I Error	Correct
Reject H_0	$P(Type \ I \ Error) = \alpha$	Probability of
	(Level of	correct decision $=$
	significance)	$1-eta={\sf Power}$

Type I Error, Type II Error, and Power

	H ₀ True	H ₀ False
Fail to reject H_0	$1 - \alpha$	β
	Level of confidence	P(Type II Error)
Reject H ₀	α	1-eta
	Level of	Power: Probability of
	significance	finding difference if
	P(Type I Error)	it exists

P(Type I Error) = α = Probability of rejecting the null hypothesis when it is true; P(Reject $H_0|H_0$ is true)

P(Type II Error) = β = Probability of failing to reject the null hypothesis when it is false; P(Fail to Reject $H_0|H_0$ is false)

Power = $1 - \beta$ = Probability of rejecting the null hypothesis when it is false; P(Reject $H_0|H_0$ is false)

Approach: We want both α and β to be small. Since β increases as α decreases, this is not a well-defined problem.

BIOS 6611 (CU Anschutz)

Power and Sample Size

Power Calculation Derivation for a Two-Sided, One-Sample Z-test

For our derivations we will assume the population standard deviation, σ , is known. Therefore we can work with the standard normal distribution (i.e., $Z \sim N(0, 1)$) to derive closed-form equations for a one-sample two-sided Z-test.

In a different lecture we will see examples where we assume σ is unknown as estimated as s. To reflect this uncertainty, we would use the t-distribution with df = n - 1, which leads to an iterative process to estimate power, sample size, etc.

The 5 Important Quantities

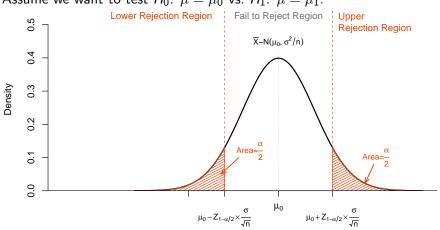
When designing a study we generally have 5 important quantities to consider:

- **1** Level of significance of a test = α
- 2 Power of a test = 1β
- **3** Sample size = n
- Effect size (e.g., detectable difference in means $|\mu_0 \mu_1|$)
- **(3)** Estimate of variability: σ^2

We usually set α (typically at 0.05) and assume a known σ^2 . Then, by fixed two of the other quantities, we can solve for the last remaining one.

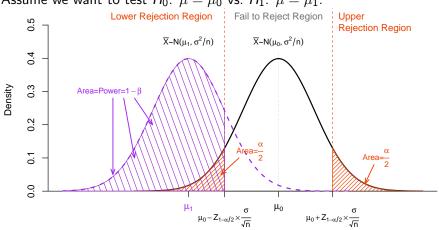
Some statistical methods will have additional quantities to consider.

Derivation of Power for a Two-Sided One-Sample Z-test



Assume we want to test H_0 : $\mu = \mu_0$ vs. H_1 : $\mu = \mu_1$.

Derivation of Power for a Two-Sided One-Sample Z-test



Assume we want to test H_0 : $\mu = \mu_0$ vs. H_1 : $\mu = \mu_1$.

Check out https://rpsychologist.com/d3/nhst/ for an interactive version!

Derivation of Power for a Two-Sided, One-Sample Z-test

The power, P(Reject $H_0|H_0$ False), to detect the difference $|\mu_0 - \mu_1|$ is Power = P(Reject $H_0|\mu = \mu_1$)

$$=P\left(\bar{X} < \mu_{0} - Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \operatorname{OR} \bar{X} > \mu_{0} + Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \Big| \mu = \mu_{1}\right)$$

$$=P\left(\bar{X} < \mu_{0} - Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \Big| \mu = \mu_{1}\right) + P\left(\bar{X} > \mu_{0} + Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \Big| \mu = \mu_{1}\right)$$

$$=P\left(\bar{X} < \mu_{0} - Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \Big| \mu = \mu_{1}\right) + \approx 0$$

$$=P\left(\frac{\bar{X} - \mu_{1}}{\frac{\sigma}{\sqrt{n}}} < \frac{(\mu_{0} - Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}) - \mu_{1}}{\frac{\sigma}{\sqrt{n}}} \Big| \mu = \mu_{1}\right)$$

$$=P\left(Z < \frac{\mu_{0} - \mu_{1}}{\frac{\sigma}{\sqrt{n}}} - Z_{1-\frac{\alpha}{2}}\right)$$

$$=\Phi(Z < Z_{1-\beta})$$

Two-Sided One-Sample Z-Test Calculations

Find the *power* of a test with *n* subjects, a given α , and known σ to detect a difference in means of $|\mu_0 - \mu_1|$:

$$Z_{1-\beta} = \frac{|\mu_0 - \mu_1|}{se(\bar{X})} - Z_{1-\frac{\alpha}{2}} = \frac{|\mu_0 - \mu_1|}{\sigma/\sqrt{n}} - Z_{1-\frac{\alpha}{2}} \implies$$
$$1 - \beta = \Phi\left[\frac{|\mu_0 - \mu_1|}{\sigma/\sqrt{n}} - Z_{1-\frac{\alpha}{2}}\right]$$

On the next slide we will see we can rearrange these equations to solve for other quantities of interest, such as n or the detectable difference.

Solve for *n* or Detectable Difference

Find the *number of subjects* needed to detect a difference of $|\mu_0 - \mu_1|$ with α type I error, $1 - \beta$ power, and known σ :

$$n = \frac{\sigma^2 \left(Z_{1-\beta} + Z_{1-\frac{\alpha}{2}} \right)^2}{(\mu_0 - \mu_1)^2}$$

Find the *difference in means* that can be detected with a given *n*, α type I error, $1 - \beta$ power, and known σ :

$$|\mu_0 - \mu_1| = (Z_{1-\beta} + Z_{1-\frac{\alpha}{2}}) \times \frac{\sigma}{\sqrt{n}}$$

Example - Sample Size

A new calcium channel blocker is to be tested for treatment of unstable angina, with an outcome of change in heart rate after 48 hours. A researcher wants to know the sample size needed to detect a difference of 5 bpm with σ =10 bpm, α = 0.05, and 80% power (1 - β = 0.8).

$$n = \frac{\sigma^2 \left(Z_{1-\beta} + Z_{1-\frac{\alpha}{2}} \right)^2}{(\mu_0 - \mu_1)^2}$$
$$= \frac{10^2 (Z_{0.8} + Z_{0.975})^2}{5^2}$$
$$= \frac{10^2 (0.84 + 1.96)^2}{25}$$
$$= 31.36$$

The investigator will need 32 participants. (Note, in order to achieve *at least* the desired power we **must** round up, even if the estimate was n = 31.01. Otherwise we would be slightly **underpowered**.)

Example - Power

Suppose the same investigator expects they can only enroll 20 participants. Assuming the same difference of 5 bpm, $\sigma = 10$ bpm, and $\alpha = 0.05$, what is their power in this scenario?

$$Z_{1-\beta} = \frac{|\mu_0 - \mu_1|}{\sigma/\sqrt{n}} - Z_{1-\frac{\alpha}{2}}$$
$$= \frac{5}{\frac{10}{\sqrt{20}}} - Z_{0.975}$$
$$= 2.236 - 1.96$$
$$= 0.276$$

Next we use the CDF of the standard normal distribution to calculate the power at $Z_{1-\beta} = 0.276$:

17/21

 $\Phi(0.276) = 0.608726 \approx 0.61 = 1 - \beta =$ Power

A sample size of 20 provides approximately 61% power to detect a difference of at least 5 bpm, given that it exists. BIOS 6611 (CU Anschutz) Power and Sample Size Week 4

Example - Detectable Difference

The investigator is concerned about their low power on the previous slide. They ask what is their detectable difference if n = 20, $\sigma = 10$ bpm, $\alpha = 0.05$, and they want 80% power?

$$|\mu_0 - \mu_1| = (Z_{1-\beta} + Z_{1-\frac{\alpha}{2}}) \times \frac{\sigma}{\sqrt{n}}$$
$$= (Z_{0.8} + Z_{0.975}) \times \frac{10}{\sqrt{20}}$$
$$= (0.84 + 1.96)(2.236)$$
$$= 6.26$$

With a sample size of 20, there is 80% power to detect a difference of at least 6.26 bpm, given that it exists.

Additional Considerations

One-Sided Tests

The power calculation for a one-sided test looks very similar to our previous formula, but instead of $\frac{\alpha}{2}$ (i.e., half the α in each tail), we put it all in the one tail.

For H_1 : $\mu_1 > \mu_0$:

$$Z_{1-\beta} = \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} + Z_\alpha = \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} - Z_{1-\alpha} \implies 1-\beta = \Phi\left[\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} - Z_{1-\alpha}\right]$$

For H_1 : $\mu_1 < \mu_0$:

$$Z_{1-\beta} = \frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}} + Z_\alpha = \frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}} - Z_{1-\alpha} \implies 1-\beta = \Phi\left[\frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}} - Z_{1-\alpha}\right]$$

What a Power Calculation Does (and Doesn't) Do

- Power calculations are **not** guarantees of a successful outcome for future research!
- Power/sample size help us to determine if a certain research study is feasible based on the assumed scenario.
- The power calculation serves as an educated guess. Even if we knew the underlying population distribution, we are still taking a *sample*, and therefore will have variability around our estimates.
- Power calculations are generally required for most funded research studies (and should be carried out for most unfunded studies as well).
- In practice we often calculate power over a range of (realistic) scenarios.