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Motivation
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Sampling Distributions

In classical statistics, we often assume a distribution for the population, and
use this distributional assumption to derive sampling distributions for a
statistic.

Recall, the sampling distribution of a statistic is the probability
distribution we would observe based on random sampling. It is an
assumption of the theoretical, underlying distribution.

For example, we have discussed the following:
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Unknown Distribution of the Sampling Statistic

What if the underlying distribution is unknown for a given statistic?

How could we estimate the sampling distribution for a statistic in this case?

It is even possible to estimate the distribution of a random variable?
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The Empirical Cumulative Distribution Function

We can still describe the distribution of a sampling statistic. Assuming
random sampling, our sample is a representation of the population.

The empirical cumulative distribution function is our best “estimate” of
the population distribution:
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The Plug-In Principle

If our goal is to estimate the sampling distribution for some statistic, we
need to know:

The underlying population (which may be unknown!)
The sampling procedure (e.g., sampling with or without replacement)
The statistic, e.g., X̄

Using the plug-in principle is a natural and frequent approach in statistics.
Think X̄ for µ and s2 for σ2.

As another example, we know X̄ calculated from i.i.d. observations has a
standard error of σ√

n . When σ is unknown we plug in the estimator s to
obtain our standard error estimate: s√

n .
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The Empirical Set-Up
Let F and f denote the cdf and pdf for some unknown distribution with
x1, x2, . . . , xn a random sample from this distribution. Without making
further assumptions about the distribution, we can use the empirical
distribution:

F̂ (s) = 1
n {number of points ≤ s} , note this is a discrete function

f̂ (s) = 1
n{number of points = s}

Recall, for a discrete R.V. the mean of X ∼ F is EF (X ) = µF =
∑

x xf (x).
When we do not know F , we can plug in F̂ (i.e., empirical distribution):

EF̂ (X ) = µF̂ =
∑

x
x f̂ (x) =

n∑
i=1

xi

(1
n

)
= x̄

VarF̂ (X ) = σ2
F̂ = EF̂ [

(
X − µF̂

)2] =
n∑

i=1
(xi − x̄)2

(1
n

)
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The Bootstrap
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The Bootstrap Idea

The original sample approximates the population from which it was drawn.
So resamples from this sample approximate what we would get if we took
many samples from the population. The bootstrap distribution of a statistic,
based on many resamples, approximates the sampling distribution of the
statistic, based on many samples.1

This resampling will create an empirical distribution which we use as the
bootstrap distribution for our statistic of interest. Specifically, this repeated
sampling is known as Monte Carlo sampling.

1from pg. 100 of our Chihara and Hesterberg textbook
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Sketching the General Bootstrap Concept

Original Bootstrap

Sample Distribution

Sample

Statistic
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Simple Example

To illustrate the general bootstrap idea in this slide deck, consider the
sample (1, 3, 4, 6). How many bootstrap samples are there?

What is the probability the mean is 1?

What is the probability the maximum is 6?
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Verify Results in R

dat <- c(1,3,4,6)
boot <- expand.grid(dat,dat,dat,dat) #all possible combos

#Pr(mean is 1 in bootstrap sample)
boot.mean <- apply(boot,MARGIN=1,mean)
mean(boot.mean==1); 1/256

## [1] 0.00390625

## [1] 0.00390625

#Pr(max is 6 in bootstrap sample)
boot.max <- apply(boot, MARGIN=1,max)
mean(boot.max == 6); 1-(3^4)/(4^4)

## [1] 0.6835938

## [1] 0.6835938
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Histogram of Sample Means

Bootstrap means of (1,3,4,6)
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Comparing the Bootstrap and Original Samples

Our original sample of (1, 3, 4, 6) has a mean and standard deviation of
mean(dat)
## [1] 3.5
sd(dat)
## [1] 2.081666

The bootstrap distribution of our sample mean has a mean and bootstrap
standard error of
mean(boot.mean)
## [1] 3.5
sd(boot.mean) #bootstrap standard error
## [1] 0.9031535

The bootstrap SE of a statistic is the standard deviation of the bootstrap
distribution of that statistic.
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Bootstrap Sampling for a Single Population

When n = 4 we only had 256 possible combinations and could define the
entire sampling space. As n increases we can’t exhaustively explore this
(e.g., n = 30 has 3030 = 2.0589× 1044 combinations).

Fortunately, we can leverage sampling with replacement to estimate our
bootstrap distribution:

Given a sample of size n from a population,
1 Draw a resample of size n with replacement from the sample. Compute

a statistic that describes the sample, such as the sample mean.
2 Repeat this resampling process many times, say 10,000.
3 Construct the bootstrap distribution of the statistic. Inspect its spread,

bias, and shape.
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Example with Known Sampling Distribution

Consider a sample of size 50 drawn from N(23, 72). Let’s estimate the
bootstrap distribution for the sample mean:
set.seed(515)
dat <- rnorm(n=50, mean=23, sd=7)

B <- 10000 # number of bootstraps
my.boot <- numeric(B) # initialize vector for results

for(i in 1:B){
# resample with replacement:
x <- sample(dat, size=50, replace=TRUE)

# compute mean, store in my.boot:
my.boot[i] <- mean(x)

}
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Known Sampling Distribution Figures
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Evaluating Bootstrap Performance
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Bias

The bias of an estimator θ̂ is Bias
[
θ̂
]

= E
[
θ̂
]
− θ.

The bootstrap estimate of the bias is Biasboot
[
θ̂∗
]

= E
[
θ̂∗
]
− θ̂, where

E [θ̂∗] is the mean of the bootstrap distribution and θ̂ is the sample estimate.

If an estimator, θ̂, tends to over or under estimate the true parameter value,
θ, then it is biased. An estimator is unbiased if the bias is zero.
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Bootstrap Performance

For most common estimators and under fairly general distribution
assumptions:

Center: the bootstrap distribution is NOT an accurate estimator for
the center of the sampling distribution
Spread: the spread of the bootstrap distribution does reflect the
spread of the sampling distribution
Skewness: the skewness of the bootstrap distribution does reflect the
skewness of the sampling distribution
Bias: the bootstrap can be used to estimate the bias of the sampling
distribution

Thus, bootstrap sampling is useful for studying the sampling behavior of
estimators (e.g. SE, skewness, bias) and obtaining confidence intervals for a
parameter. It is not used to improve estimators.
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How Many Bootstrap Samples?

For good accuracy, generally 104 or more.

“In large samples, clearly the bootstrap [is preferred]. In small samples, the
classical procedure may be preferred. If the sample size is small, then
skewness cannot be estimated accurately from the sample, and it may be
better to assume skewness = 0 in spite of the bias, rather than to use an
estimate that has high variability.”2

Some parameters are not estimated well with bootstrap sampling, such as
quantiles (e.g., median) or ones that depend heavily on a small number of
observations from the larger sample.

2“Bootstrap” review paper by Tim Hesterberg (2011)
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