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Prediction and Estimation
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Prediction and Estimation

Reference Range (Population Confidence Interval): description of the
variability in the underlying population (usually the central 95% of the
population), generally estimated from large samples of individuals
representative of the population.

Confidence Interval: description of the variability in our sample estimate
of the true underlying mean (or any other population parameter).
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Example

In our FEV example we know Ȳ = 2.64, σ̂Y = 0.867, and n = 654.

What is the expected FEV for a single child (Ŷ )?

What is the 95% reference range? (Note: need to assume FEV is normally
distributed.)

What is our estimate of the true underlying mean FEV in children (µ̂)?

What is the 95% CI? (Note: FEV doesn’t need to be normal if CLT applies.)
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Prediction and Estimation in SLR
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Estimation and Prediction

In regression, we assume that the underlying mean changes according to the
level of an explanatory variable(s).

Estimation: The expected mean (average) µ for a given value of X , say X0,
in the underlying population is:

µ̂Y |X0 = β̂0 + β̂1X0

The standard error of the estimate is given by:

SE (µ̂Y |X0) =

√√√√ σ̂2
Y |X
n +

σ̂2
Y |X

n − 1

(
(X0 − X̄ )2

σ̂2
X

)
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Estimation and Prediction

Prediction: The predicted value of Y for a given value of X , say X0, for a
randomly selected individual from the underlying population is:

Ŷ |X0 = β̂0 + β̂1X0

Its standard error is given by:

SE (Ŷ |X0) =

√√√√σ̂2
Y |X +

σ̂2
Y |X
n +

σ̂2
Y |X

n − 1

(
(X0 − X̄ )2

σ̂2
X

)

This is broken down as the variance of the individual around µY |X and the
variance in estimating µY |X .
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Confidence Intervals and Prediction Intervals

Confidence Interval: A 95% confidence interval describes the variability in
the estimate of the underlying mean. It can be calculated (without
assuming normality of the errors) as:

µ̂Y |X ± tn−2,0.975SE (µ̂Y |X )

Prediction Interval: A 95% prediction interval (like a reference range)
describes the variability in the underlying population. It can be calculated
(assuming normality of the errors) as:

(Ŷ |X )± tn−2,0.975SE (Ŷ |X )

Prediction intervals will be wider than confidence intervals since there is
more variability around estimating an individual point as compared to the
mean (i.e., prediction intervals take the true error term into account).
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FEV in Children Example
fev <- read.csv('FEV_rosner.csv', header=T)
reg_out <- lm(fev ~ age, data=fev) #save regression results
sum( reg_out$residuals^2 ) / (nrow(fev)-2) # calculate MSE

## [1] 0.3220869
sum( fev$age ) # calculate sum(x_i)

## [1] 6495
sum( fev$age^2 ) # calculate sum(x_i^2)

## [1] 70201
mean( fev$age ) # calculate mean of X

## [1] 9.931193
var( fev$age ) # calculate variance of X

## [1] 8.725733
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FEV in Children Example - CI

Calculate the 95% confidence interval for the underlying mean FEV among
all children aged 16.

First we calculate our mean:

µ̂Y |X=16 = 0.43165 + 0.22204 (16) = 3.98 liters

Then we calculate our SE:

SE
(
µ̂Y |X=16

)
=

√√√√ σ̂2
Y |X
n +

σ̂2
Y |X

n − 1

(
(X0 − X̄ )2

σ̂2
X

)

=
√

0.32209
654 + 0.32209

653

((16− 9.931)2

8.726

)
≈0.05074

Considering t654−2,0.975 = 1.963609, our 95% CI is

3.98± 1.96(0.05074) = (3.885, 4.989)
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FEV in Children Example - PI

Calculate the 95% prediction interval in a randomly selected child aged 16.

First we calculate our mean:

(Ŷ |X = 16) = 0.43165 + 0.22204 (16) = 3.98 liters

Then we calculate our SE:

SE
(
Ŷ |X = 16

)
=

√√√√σ̂2
Y |X +

σ̂2
Y |X
n +

σ̂2
Y |X

n − 1

(
(X0 − X̄ )2

σ̂2
X

)

=
√
0.32209 + 0.32209

654 + 0.32209
653

((16− 9.931)2

8.726

)
≈0.569793

Considering t654−2,0.975 = 1.963609, our 95% PI is

3.98± 1.96(0.569793) = (2.867, 5.101)
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FEV in Children Example
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From these two figures of the entire data set and a small subsample, we can note a
few interesting observations:

1 The change in slope has a larger impact on the intervals, especially CI, at the
extremes. This is because when X0 = X̄ the standard error is minimized.

2 A smaller sample size more greatly impacts the confidence interval width than
the prediction interval width.
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Properties of Prediction Intervals and Confidence
Intervals

Prediction intervals are wider than confidence intervals.

Both prediction intervals and confidence intervals are wider at the ends of
the data (the SEs are at a minimum at X̄ ).

Confidence intervals shrink considerably as the sample size grows.
Prediction intervals stay about the same as the sample size grows.

Large samples are generally required if prediction intervals are to be used as
reference ranges.
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