
Simple Linear Regression: Partitioning Variance,
Quality of Fit, the F-test

BIOS 6611

CU Anschutz

Week 7

BIOS 6611 (CU Anschutz) Simple Linear Regression: Partitioning Variance, Quality of Fit, the F-testWeek 7 1 / 18



1 Partitioning the Total Variability

2 Measuring Goodness of Fit

3 ANOVA Table and F-test

BIOS 6611 (CU Anschutz) Simple Linear Regression: Partitioning Variance, Quality of Fit, the F-testWeek 7 2 / 18



Partitioning the Total Variability
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Partitioning the Variability

We can examine the fit of the regression line by partitioning the total
variability of Y into two components:

Regression component: The variability in Y due to the regression of Y
on X . The regression component is the difference between the predicted Y
and the mean of the Y ’s:

Ŷi − Ȳ

Residual component (error): The variability in Y “left-over” after the
regression of Y on X . The residual component is the difference between the
observed Y and predicted Y :

Yi − Ŷi
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Partitioning the Variability

Source: Rosner 7th Ed., pg. 435

The simplest regression estimate for Yi is Ȳ (an intercept-only model). The
difference between the observed Y ’s and the mean of the Y ’s, Yi − Ȳ , is
the total error. The total error can be broken down further as the sum of
the regression component and the residual component:

Yi − Ȳ = (Ŷi − Ȳ ) + (Yi − Ŷi )
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The Fundamental Equation of Regression Analysis

This partitioning of the variability leads to the fundamental equation of
regression analysis:

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1
(Ŷi − Ȳ )2 +

n∑
i=1

(Yi − Ŷi )2

SSTotal = SSModel + SSError

Total Sums of Squares (SSTotal)

The total sum of squares is the sum of squares of the deviations of the
individual sample points from the sample mean (note the relationship
between SSTotal and the variance of Y , σ̂2

Y ):

n∑
i=1

(Yi − Ȳ )2; σ̂2
Y =

∑n
i=1(Yi − Ȳ )2

n − 1 = SSTotal
n − 1
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The Fundamental Equation of Regression Analysis

Error Sums of Squares (SSError)

The error sum of squares is the sum of squares of the residual components
(note the relationship between SSError and the variance of Y given X ,
σ̂2

Y |X ):
n∑

i=1
(Yi − Ŷi )2; σ̂2

Y |X =
∑n

i=1(Yi − Ŷi )2

n − 2 = SSError
n − 2

Model Sums of Squares (SSModel)

The model sum of squares is the sum of squares of the regression
components:

n∑
i=1

(Ŷi − Ȳ )2 = SSModel = SSTotal − SSError
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Measuring Goodness of Fit
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Quality of the Fit

Once the least-squares line is determined, we may wish to know how well
the least-squares regression line ‘fits’ the data.

Does the fitted line help us predict Y ? That is, is least-squares line
better than no line at all for predicting Y ?
And if so, to what extent?

Measuring the goodness of fit involves quantifying how much scatter there
is around the regression line.

We know that the SSError represents the variation in the data after fitting
our regression line (i.e., the “left-over” variation), where large values
indicate a lot of left-over variation. Leveraging the partitioning of the
variability, we can describe this variability.
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Coefficient of Determination (R2)

The “R-squared” value, also known as the coefficient of determination,
is the proportion of total variation in the data (about the average Ȳ ) that is
removed by fitting the regression line.

In other words, it is the proportion of the variance of Y that can be
explained by the variable X . It is calculated as

R2 = SSTotal − SSError
SSTotal

= SSModel
SSTotal

R2 is often multiplied by 100 and is interpreted as the percent of the total
variation in the dependent variable Y that is explained by the independent
variable X (using a linear model).
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Properties of R2

R2 can only be between 0 and 1: 0 ≤ R2 ≤ 1

If R2 = 0, then the regression line explains none of the variability in Y
and the regression line is no better than using Ȳ as our predictor of Y .

If R2 = 1, then there is a perfect fit and the regression line explains all
of the variability. In this case, every data point falls exactly on the
regression line and there is no residual variation

R2 does not measure the magnitude of the slope or measure the
appropriateness of the straight-line model (i.e., a large R2 does not
necessarily imply an "adequate" model).
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R2 Example
fev <- read.csv('FEV_rosner.csv', header=T)
summary( lm(fev ~ age, data=fev))

##
## Call:
## lm(formula = fev ~ age, data = fev)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.57539 -0.34567 -0.04989 0.32124 2.12786
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.431648 0.077895 5.541 4.36e-08 ***
## age 0.222041 0.007518 29.533 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5675 on 652 degrees of freedom
## Multiple R-squared: 0.5722, Adjusted R-squared: 0.5716
## F-statistic: 872.2 on 1 and 652 DF, p-value: < 2.2e-16

FEV (outcome) and age (predictor) have

R2 = SSModel
SSTotal

= 280.91916
490.91984 = 0.5722

Interpretation: 57.22% of the variability in FEV is explained by the linear
relationship with age.
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ANOVA Table and F-test
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The ANOVA Table

The analysis of variance (ANOVA) table is typically used to summarize
regression results, where n is the sample size and p is the number of
predictors included in the model:

Source Sum of
Squares

Degrees of
Freedom

Mean
Square

Variance
Ratio (F) p-value

Model SSModel p MSModel F=MSModel
MSError

Pr(Fp,n−p−1 > F)
Error SSError n − p − 1 MSError
Total SSTotal n − 1

Where MSModel = SSModel
p and MSError = SSError

n−p−1 .

PROC REG in SAS will produce this table automatically. In R we have to do
a little more work to get our results into this format.
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F -Test for Simple Linear Regression

From our ANOVA table we saw that the model mean square is the
regression (model) sum of squares divded by the number of predictor
variables, p, in the model (p = 1 for SLR). Theoretically, the expectation of
our MSModel is

E (MSModel ) = σ2
Y |X + β2

1

n∑
i=1

(Xi − X̄ )2

The residual mean square was the residual sum of squares divided by its
degrees of freedom (n − 2 for SLR). Its expectation is

E (MSError ) = E (s2
Y |X ) = σ2

Y |X
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F -Test for Simple Linear Regression

It can be shown that the ratio of two variances follows an F distribution
under the null hypothesis that the two variances are equal (σ2

1 = σ2
2):

s2
1/σ

2
1

s2
2/σ

2
2
∼ Fn1−1,n2−1

In the context of regression, under the null hypothesis that the true slope of
the regression line is zero (H0 : β1 = 0), both MSModel and MSError are
independent estimates of σ2

Y |X . Thus, the ratio of the regression mean
square to the residual mean square will have an F distribution with p and
n − p − 1 degrees of freedom:

F = MSModel
MSError

∼ Fp,n−p−1
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F -Test for Simple Linear Regression

The F test is used to test if the model including covariate(s) results in a
significant reduction of the residual sum of squares compared to a model
containing only an intercept.

If the null hypothesis is true, then the expected value of the F ratio should
be 1. If the null hypothesis is false, then the expected value of the F ratio is
greater than 1.

The t-test and the F-test are equivalent for testing H0 : β1 = 0 in simple
linear regression:

If X ∼ tn, then X 2 ∼ F1,n.
Recall, t = β̂1

ŜE(β̂1) , where t ∼ tn−p−1 under H0.
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F -Test Example
fev <- read.csv('FEV_rosner.csv', header=T)
summary( lm(fev ~ age, data=fev))

##
## Call:
## lm(formula = fev ~ age, data = fev)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.57539 -0.34567 -0.04989 0.32124 2.12786
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.431648 0.077895 5.541 4.36e-08 ***
## age 0.222041 0.007518 29.533 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5675 on 652 degrees of freedom
## Multiple R-squared: 0.5722, Adjusted R-squared: 0.5716
## F-statistic: 872.2 on 1 and 652 DF, p-value: < 2.2e-16

H0 : β1 = 0 vs. H1 : β1 6= 0

F = 872.18, Pr(F1,652 > 872.18) < 0.0001 (can use pf(872.2, df1=1,
df2=652, lower.tail=F))

Conclusion: Reject the null hypothesis that β1 = 0 and conclude that there is a
significant association between age and FEV (p < 0.0001).
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